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Abstract

Ybarra, Gary A. High Resolution Target Range Estimation in Inhomogeneous

Media Using Millimeterwave Radar*. (Under the direction of Sasan H. Ardalan.)

Two narrow-band radar systems are developed for high resolution target

range estimation in inhomogeneous media. They are reformulations of two

presently existing systems such that high resolution target range estimates may

be achieved despite the use of narrow bandwidth radar pulses. A double

sideband suppressed carrier radar technique originally derived in 1962, and

later abandoned due to its inability to accurately measure target range in the

presence of an interfering reflection, is rederived to incorporate the presence of

an interfering reflection. The new derivation shows that the interfering reflection

causes a periodic perturbation in the measured phase response. A high

resolution spectral estimation technique is used to extract the period of this

perturbation leading to accurate target range estimates independent of the

signal-to-interference ratio. A non-linear optimal signal processing algorithm is

derived for a frequency-stepped continuous wave radar system. The resolution

enhancement offered by optimal signal processing of the data over the

conventional Fourier Transform technique is clearly demonstrated using

measured radar data. A method for modelling plane wave propagation in

inhomogeneous media based on transmission line theory is derived and

studied. Several simulation results including measurement of non-uniform

electron plasma densities that develop near the heat tiles of a space re-entry

vehicle are presented which verify the validity of the model.

* Thisworkwassupportedinpart by the NationalAeronauticsandSpace AdministrationLangley
ResearchCenter underGrantNAG-l-1219.
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Chapter 1

Introduction

This dissertation presents the reformulation of two presently existing radar

systems such that narrow-band pulses may be utilized while achieving high

resolution target ranging. Conventional pulsed radar achieves high resolution

by transmitting large bandwidth pulses. If the medium in which the target is

embedded has a frequency dependent inhomogeneity, then a wide-band pulse

would be smeared in time due to dispersion because different frequency

components of the pulse will travel at different velocities. The detection process

used to measure the target range from the received pulses will produce

significant error. Therefore, high resolution is not achievable using conventional

pulsed radar if the propagation path contains any medium with a frequency

dependent inhomogeneity.

The two radar systems developed in this dissertation are a frequency-

stepped double sideband suppressed carrier (DSBSC) system and a frequency-

stepped continuouswave (CW) system. Specifically, the stepped DSBSC

process is derived to incorporate the presence of an interfering reflection. The

derivation shows that the interfering reflection causes a periodic perturbation in

the measured phase sequence. It is demonstrated that by applying a high

resolution spectral estimation technique to these measurements, accurate target

range estimates may be detected. For the stepped CW technique, a new optimal

signal processing algorithm is derived for extracting highly resolved target range

estimates. The range resolution achievable using the new optimal processing

algorithm is clearly demonstrated using measured radar data.



In order to simulate the performance of the two radar systems, a model for

electromagnetic (EM) plane wave propagation in inhomogeneous media is

derived. Simulation results using this model are presented in the context of

measuring non-uniform electron plasma densities that develop near the thermal

protection heat tiles of a space re-entry vehicle. However, the model is much

more general and can be used to simulate accurately EM propagation in any

inhomogeneous medium.

1.1 Microwave and Millimeterwave Radar

There presently exist several schemes which utilize electromagnetic (EM)

energy to determine the distance from an antenna to a reflective target. The

process of detecting a target and its range using EM energy is referred to as

radar, an acronym for Radio Detection and Ranging. The primary objectives of

a radar system are to determine the presence of a target and also its range, or

distance from some reference point to the target. Other target properties that are

capable of being detected by certain radar systems are its location, velocity, and

physical dimensions [Collins, Skolnik]. The radar systems developed in this

dissertation are specifically designed for estimating target range. However, with

further signal signal processing, target velocity can be extracted from the data

produced by either system. This extension remains as future research and is not

addressed in this dissertation.

There are two main performance measures of a target range estimate:

accuracy and resolution [Artech84, Wehner, Bird]. Accuracy refers to the

difference between the true and estimated values of the range. Resolution is the

2



ability to detect two or more distinct scatterers when they are at approximately

the same range. These two performance measures of range estimation are

often confused and careful attention should be given to their difference.

The electromagnetic spectrum contains a very wide range of frequencies

that are currently used for radar measurements. Radars can be designed and

developed at any frequency at which EM energy can be generated and

controlled. Most radar systems utilize frequencies in the microwave and

millimeterwave regions. The frequency ranges associated with microwaves and

millimeterwaves overlap. Together they span the EM spectrum from

approximately 300 MHz to 300 GHz. The radars presented in this dissertation

are designed to operate within this frequency range.

A radar system is typically designed to achieve superior performance for a

specific set of measurement circumstances. For example, many applications

require a long detection range [Artech 84]. In order to detect targets at long

ranges, careful selection of the radar operating frequency is critical to avoid

atmospheric absorption. Examples of other measurement circumstances which

may dictate constraints on system design are need for covertness, tracking

ability, classification or identification, adverse weather performance, and volume

search [IEEE]. The radars developed in this dissertation do not consider these

constraints. They are developed solely for the general purpose of producing

accurate and highly resolved target range estimates. Specific system details

that may be required for a particular application remain the responsibility of the

specific system designer.

3



Traditional pulsed (constant frequency) radars rely on a narrow

pulsewidth to provide the range resolution _r, which is directly proportional to

the pulsewidth [Wehner]

Ar = Ctp (1.1.1)

where c is the velocity of EM propagation and tp is the time duration of the radar

pulse. A popular high resolution variation of traditional pulsed radar is

frequency-chirp pulsed radar which has a range resolution 3,rs

C

Ars _=2--_ (1.2.1)

where I_ is the bandwidth of the frequency-chirped pulse. Frequency chirping is

achieved by frequency modulating the transmitter pulse. The range resolution

objective of the radar systems developed in this dissertation is on the order of 5

ram. In order to achieve this resolution using either traditional pulsed radar or its

high resolution chirp variation would require a pulse with a minimum bandwidth

of 30 GHz. If the target is embedded in a frequency dependent inhomogeneity,

such a pulse would be smeared in time due to the dispersive medium and the

range estimate will be highly erroneous. Hence, an alternative approach to the

pulsed radar technique is required.
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1.2 The Microwave Reflectometer Ionization Sensor

The primary motivation for this study has been a prospective NASA

shuttle mission called the Aeroassist Flight Experiment (AFE). In this

experiment, a small spacecraft is to be deployed by the shuttle and accelerated

to atmospheric entry velocity. The unmanned craft will then be flown through the

earth's atmosphere. During the 600s aeropass, the high temperature in the

proximity of the non-ablating heat tiles will generate a dynamic electron plasma.

The aerodynamic friction created will slow the craft, providing an aerobraking

action. Following the aeropass, the AFE vehicle will attain a low earth orbit to

be retrieved by the shuttle. One purpose of this experiment is to gather

information for the development of aerobraking technology, which requires an

accurate measurement of the electron plasma density profile. The plasma

profile data will be used to confirm or improve the flow field predictions made by

computational fluid dynamics. The system which will perform the plasma density

measurements is called the Microwave Reflectometer Ionization Sensor (MRIS).

The MRIS antennas will be mounted behind the stagnation region tile where the

plasma flow field is expected to be laminar. Polarization is not an issue because

the plasma density is expected to be constant in the transverse plane.

There exist several predictions of the plasma density profiles that are to

be measured. One such prediction, based on Computational Fluid Dynamics

(CFD), is considered to be one of the better predictions presently available

[Ybarra2]. An example of a CFD predicted profile is shown in Fig. 1.2.1,

The distance values shown are referenced to the outer surface of the heat

tiles of the AFE vehicle. Distances referenced from the heat tiles are referred to

as standoff distances.
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Electron plasma may be characterized by its relative dielectric constant

[Chen] given by

(1.2.3)

where q is the electron charge, N is the electron density, m is electron mass, c o

is the permittivity of free space, _0 is the angular frequency of propagating

electromagnetic (EM) energy, and v is the plasma collision frequency.

CFD ELECTRON DENSITY PROFILE PREDICTION (87 Ion altitude)

3
N (d/cm )

4.0 10"

3.5 10"

3.0 10"

2.5 10"

2.0 10"

1.5 10"

1.0 10"

5.0 10 '_

0.0
0 5 10

standoff distance (cm)

15

Figure 1.2.1 Computational fluid dynamics (CFD) prediction of the electron
density profile at 87 km altitude.
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Er=l . 18.____
f2 (1.2.4)

where the EM frequency f is in kHz, and the electron density N is in e'/cm 3.

Unlike other materials, the group velocity Vg of EM energy in a plasma is the free-

space velocity c scaled by _r"

vg =c _-=¢ %/1- _2 (1.2.5)

There exists a critical frequency fcr for a given electron density which occurs

when Er = 0. At this point in the plasma, called the turning point, the plasma

becomes a perfect reflector. That is, at the turning point, the reflection coefficient

becomes [' = -1, and interestingly the group velocity goes to zero. For

frequencies much greater than fcr ' Cr=l and the plasma behaves similar to free

space. For Frequencies less than fcr ' 15r< 0 the plasma behaves similar to a

waveguide below its cut-off frequency. That is, only evanescent modes are

present and no propagation occurs. As an example of a plasma density

distance measurement, consider the CFD profile in figure 1.2.1. Suppose an EM

wave is launched at a frequency of 140 GHz. The critical density, N c, at this

frequency may be calculated from (1.2.4) to be 2.42o1014 e/cm 3 and is located

at a standoff distance of 6 cm. The EM wave will penetrate into the plasma until

it is reflected at the turning point and returns as an echo. If the round-trip travel

time is measured and an average velocity of propagation is assumed, then an

estimate of the standoff distance can be made. Although this technique is

impractical due to the extremely small time interval, it serves to illustrate the

plasma density measurement concept. The velocity of energy propagation in the

7



plasma varies with the electron density profile according to (1.2.5). However, if

the electron density variation is linear with distance, then the average group

velocity is approximated well by the convenient value c/2, where c is the free

space velocity of light. Consider a linear electron density profile and its

corresponding dielectric profile as shown in figure 1.2.2.

t_

N O

o z o

z

F'-'r = 1"

0 Zp 0 Zp

z

Figure 1.2.2 Linear electron plasma density profile and the corresponding
dielectric profile.

The value of distance Zp is the location of the plasma turning point. It is

assumed here that only a single EM frequency (monochromatic) is launched

into the plasma. The group delay td within the plasma may be obtained

analytically by integrating the inverse of the group velocity over distance.

Jozptd= dz
v(z) v(z)= =%/1-z

Zp
(1.2.6)

Ii _p _z Zp Io I

du 2Zp 1 2Zp

td=l ._//-_.z =-5- _ = ---_-_ =-_--o
(1.2.7)
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This shows that the virtual distance to the turning point is twice the actual

distance. Therefore the average group velocity is c/2 in an electron plasma

whose density profile is linear with distance. The CFD predicted profile shown in

Fig. 1.2.1 is not exactly linear, but it is close enough to warrant the use of c/2 as a

first approximation to the average velocity.

It has been predicted by CFD that electron densities in the range of 1012 -

1015 e-lcm 3 are expected to be encountered in the measurement range of 0-15

cm from the heat tile during the aeropass. In order to measure this electron

density range, frequencies of 9-284 GHz would be required. Due to the MRIS

system space and weight constraints, as well as practical microwave and

millimeter wave sources, four center frequencies have been selected by NASA:

20, 44, 95, and 140 GHz. Thus, only four densities will be measured.

Measurement of these four densities will be performed sequentially and

repeated continuously for the first 500 seconds of the aeropass, and therefore

can be tracked as a function of time. This information should provide enough

data to accurately approximate the electron density profile as a function of time.

In order to launch an EM wave into the plasma, an antenna is mounted

behind the heat tiles of the AFE vehicle. The propagation path is illustrated in

Fig. 1.2.3. The thermal protection heat tile has a dielectric constant _,r= 1.36.

Thus, a small dielectric discontinuity occurs at the vacuum-tile interface which

will cause a small strength spurious reflection. However, there is a thin Reaction

Cured Glass (RCG) coating on the outer surface of the heat tile whose dielectric

constant _r is 4.8. Therefore, a significant spurious reflection will occur at the tile-

RCG interface. This reflection is considered interference and represents a

significant obstacle for the plasma density measurement.
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Figure 1.2.3 Microwave Reflectometer Ionization Sensor (MRIS) propagation
path.

The simulation results that will be presented for the two radar systems

developed in this dissertation will be in the context of measuring electron plasma

densities as an example of measuring target range in frequency dependent

inhomogeneous media. However, the systems are much more general and

application dependency of their utility is not to be inferred.

1.3 Outline of Dissertation

This dissertation is organized as follows. In Chapter 2 a method for

modelling EM planewave propagation in inhomogeneous media is derived. The

derivation is based on the theory of transmission lines. An inhomogeneous

medium is modelled by a cascade of thin slabs where each individual slab is
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homogeneous. The boundary value problem for the electric and magnetic fields

is solved at each slab boundary. It is demonstrated that for an exponential taper,

as the thickness of the slabs approaches zero, the error in the fields generated

by the model asymptotically approaches zero. The model is then used to

illustrate the behavior of EM radiation in electron plasmas.

Chapter 3 presents the derivation of the frequency-stepped double

sideband suppressed carrier (DSBSC) radar system. With certain modifications,

this chapter appeared in [Ybarra2]. The newly derived system is an extension of

the amplitude modulated (AM) CW technique [Nilssen] that was developed in the

late 1950's as a result of the stimulated interest in radar from World War II.

However, the AM CW technique was abandoned because severely erroneous

target range estimates were obtained when an interfering reflection was present.

The main contribution of this chapter is the derivation of the DSBSC system

which includes the effect of an interfering reflection. It is shown that the

interference can actually be used as a reference allowing accurate target range

estimates to be extracted from the radar data, independent of signal to

interference ratio. Simulation results for the DSBSC radar system are then

presented in the context of measuring electron plasma densities.

The frequency-stepped continuous wave system is developed in Chapter

4. Several versions of this technique are currently in use [Artech 87, Bird,

Davies1,2,3, Wehner]. The basic system that is examined in this chapter is a

generalized system formulation of the Hewlett-Packard HP-8510 network

analyzer [HP]. The function of this chapter is to present a detailed description of

the mechanism by which the CW radar data is gathered. The objective of the

stepped CW system is to extract frequency response samples from the

11



propagation path. Once the data is obtained, signal processing must be applied

to generate the target range estimate. The standard approach is to take the

Inverse Fast Fourier Transform (IFFT) of the frequency domain data resulting in a

time domain impulse response. Peaks in the impulse response correspond to

reflections whose time delay corresponds to the target range. Unfortunately, the

range resolution offered by the IFFT is inversely proportional to the total

bandwidth of the frequency range spanned by the frequency steps. This

resolution handicap of the IFFT approach is the motivation for Chapter 5 which

presents the derivation of an optimal signal processing algorithm for the stepped

CW data. The range resolution enhancement offered by this new algorithm is

clearly demonstrated by applying it to two different sets of physical

measurements. The first set of data was obtained by measuring the reflection

coefficient at the input of a coaxial verification standard [HP] terminated in a

matched load by an HP-8510 network analyzer. These measurements were

performed in the ECE Dept. microwave laboratory at NCSU. The second set of

measurements were obtained at NASA Langley Research Center (LaRC). An

HP-8510 network analyzer was used as a microwave source driving a test

apparatus for the MRIS instrument. This apparatus is described in detail in

Chapter 5. The optimal signal processing algorithm is applied to the MRIS test

data and the results illustrate significant resolution enhancement over IFFT

processing.

Finally, several future research objectives are proposed in Chapter 6

along with a final statement of the conclusions that have been drawn from the

research comprising the dissertation.
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Chapter 2

A Model for Electromagnetic Propagation in Inhomogeneous Media

In this chapter a method for modeling plane wave propagation of

electromagnetic (EM) radiation in inhomogeneous media is derived and

illustrated. The model uses cascaded slabs of homogeneous media and is

based on the theory of EM wave propagation in transmission lines. Several

applications have utilized the concept of cascaded slabs to model

inhomogeneous media. It is well known that waveguides are dispersive

[Collin]. One way of minimizing phase distortion due to dispersion is to implant

slabs of dielectric in the waveguide [Keuster]. In the case of a single dielectric

waveguide, analytical solutions are possible only for a few specific permittivity

profiles in simple geometries. In general, the problem can only be solved

numerically. Kuester examines the numerical problem for arbitrary dielectric

profiles. However, his numerical solution is subject to the constraints that all

media have constant permeability Po' and that the relative dielectric constant

satisfies E,r >_I for all media. The model developed in this chapter is not bound

by such constraints. One of the prevalent features of electron plasma is that its

relative dielectric constant always satisfies c;r < 1. Hence, a more general model

is necessary for simulating propagation in plasma. In [Richmond] cascaded

slabs of dielectric are used to model the effect of a temperature gradient on

radomes. A very large temperature gradient in the radome of an aircraft often

results from hypersonic flight through the atmosphere. The outer surface of the

radome becomes hotter than the inside, resulting in a continuous variation in

permittivity even if the radome was designed as a homogeneous structure.
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Exact solutions in closed form are available only for a few special cases

including linear and exponential inhomogeneities. In order to solve the radome

problem, Richmond models the radome by a cascade of slabs, each of which is

homogeneous. The procedure utilized is a step-by-step numerical integration

of the first few terms of the power series expansion for the fields inside each

slab. The technique is shown to produce results closely agreeing with

experimental measurements. However, the case of frequency dependent

inhomogeneities is not addressed and it is not clear how a reformulation could

be made to incorporate frequency dependence. One of the primary

contributions to this work from [Richmond] is the derivation of the relationship

between slab thickness and modelling error. This topic will be discussed further

in section 2.2.

Since the model developed in this chapter is intended for simulating EM

plane wave propagation in any inhomogeneous medium, it must be capable of

incorporating frequency dependence in both permeability IJ and permittivity 5.

There are several methods currently in use for modelling plane waves in

plasmas which incorporate frequency dependence in their non-uniform

permittivity. The majority of these methods approach the problem in terms of

finding the solution to a Fredholm integral equation of either the first or second

kind. The unknown profile index (either E(x) or Ne(X)) to be determined is

contained in the integrand of one of the terms of the equation. Such

approaches are termed profile inversion techniques [Ahn, Eden, Balanisl,2].

These profile inversion techniques appear to be as applicable to measuring

inhomogeneous plasma densities as the cascaded slab model developed in

this chapter. However, the solution of the Fredholm Integral equation for
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arbitrary density profiles requires a linear approximation [Balanis2] as well as

extensive computation. Therefore the need for developing other techniques for

solving the plasma index profile problem exists. Reducing computational

complexity while maintaining modelling accuracy is one of the primary

motivations for current research in many engineering fields. The cascaded slab

model developed in this chapter is implemented using the C programming

language and incorporates the use of both recursive data structures and

recursive programming techniques. The use of recursive programming

techniques allows the simultaneous solution of all field quantities throughout

the inhomogeneous medium. This leads to significantly reduced computation

time over conventional programming techniques.

Other techniques for plasma density determination such as those based

on the WKB approximation [Ahn, Bahar, Davies1,2,3] are capable of providing

accurate profile density estimates only for certain profile shapes. The

cascaded slab model developed in this chapter requires no constraints on the

shape of the profile index for accurate characterization.
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2.1 Electromagnetic (EM) Characterization of Inhomogeneous
Media

Consider a vertically polarized EM plane wave propagating in a medium

with permittivity E1 as illustrated in Fig. 2.1.1.

E
x

H
Y

E 1

Figure 2.1.1. Plane Wave Propagation

It is assumed here that the electric field intensity varies only in the spatial

direction x and the magnetic field varies only in the y direction. This assumption

may be expressed analytically by the relations

Ey =Ez =0 Hx =Hz =0, (2.1.1)

aEx = aEx = 0 ally _ c_Hy _ 0
Ox Oy _ Oy (2.1.2)

Assuming time harmonic fields (sinusoidal), the time reduced form of Maxwell's

two curl equations (Harrington) is

dEx dHy
dz = -joJ_Hy dz - -j_F-,x (2.1.3)
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These equations are similar to the differential equations governing the

relationship between voltage and current for Iossless transmission lines,

__= _jeU d_]= -j_C"¢dz (2.1.4)

Hence, the theory used to describe propagation in transmission lines applies

equally as well to plane-wave propagation. Now consider the discontinuity at

the boundary between two different media each having different dielectric

constants as shown in Fig. 2.1.2. This condition is similar to the discontinuity

that arises when two different transmission lines with different characteristic

impedances are connected to each other as shown in Fig. 2.1.3.

E x

Incident l

Plane Wav__=

N
Y

l

,/
,t
/

¢
/
/
/
/
/

¢

/
/
/

Figure 2.1.2o Plane wave incident normally on a dielectric discontinuity.
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] ql_ ,,j

v

!

Zo2

Figure 2.1.3. Transmission line discontinuity

The analogy between transmission lines and plane wave propagation (normal

incidence) is summarized in Table 2.1.1. Note that the mismatch at the

discontinuity is represented by a reflection coefficient for each case.

Table 2.1.1. Plane Wave-Transmission Line Analogy [Brown].

Transmission Une
Quantity
Voltage .....
Current
Inductance
per unit length
Capacitance
per unit length
Characteristic
impedance

Phase-shift constant

Velocity of
Propagation

Reflection Coefficient

Incident wave power

Symbol or Equation Plane- Wave
Quantity
Electric field Intensity

v=--L

V

!'1 Magnetic field intens_
L Permeability

C Permittivity

=_[_- Intrinsic impedanceZo

Phase-shift constant

Velocity of propagatior

p+=IVy2
2zo

Reflection coefficient
at boundary between

_! andE_
Incident wave
power density

Symbol or Equation

Ex,
HV
IJ

E

1
V'----

F=.q2- ql
q2 + ql

p+=lE;2
2q
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Using the relationships provided by table 2.1.1, the problem of plane wave

propagation through any number of discontinuities may be solved. Consider

the system shown in figure 2.1.4 which is a cascade of multiple slabs each of

which is homogeneous but whose combined structure is inhomogeneous. This

problem may be solved by solving the equivalent transmission line problem

shown also. Therefore, solving general transmission line networks is focussed

upon first, and the problem of plane wave propagation is examined later in this

section.

.... $_!:i..'_._'"::i';.._.

Z01

Figure 2.1.4.

.......... ..................................... _:_.:::-.-:::.: ._-:-:-.:.:o_:.:. :._.:.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

I I
I I

Z 02 Z 03 Z 04 Z 05 Z 06

Z07

Modeling propagation through multiple layers of media as
transmission line sections.

Consider the basic problem of simulating pulse transmission through a

loaded transmission line. Assume that the pulse of interest is bandlimited with
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a cutoff frequency of fc • The pulse response can be obtained by first computing

the frequency response of the network and then multiplying the frequency

spectrum of the pulse by the frequency response of the transmission line

network. Finally, the inverse Fast Fourier Transform (IFFT) of this product yields

the time domain pulse response. Therefore, as a first step in calculating the

frequency response of the network, the network response to a single sinusoid of

frequency fo is analyzed. Consider the loaded transmission line connected to

the generator Vs through a source impedance Zs as shown in figure 2.1.5.

Z
$

(b
I I

I I

I I

I I

6 6

x = 0 V(x), I(x) x = L

Z L

Figure 2.1.5. Generator connected to a loaded transmission line.

The voltage and current at any point on the transmission line can be obtained

from the following expressions [LePage]

v(x)=_
vs Zo 1 + FLe-2v(L'x)

¢ -yx

z o + z, 1 - FsFL e-2_tL (2.1.5)
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V s -yx
i(x) = -- e

Z0 + Z s

1 - FLe-2Y(t_x)

,-. -2yL

1 - tslLe (2.1.6)

In the above expressions the propagation constant y is given by

y = _,/(r + jcol)(g + jcoc) (2.1.7)

and the characteristic impedance zo of the transmission line is given by

A/ r + jtol
Z 0 V g + jcoc (2.1.8)

where r,l,c, and g are the distributed resistance, inductance, capacitance, and

conductance of the transmission line respectively. The expressions for the load

and source reflection coefficients are

Z L-Z 0

rL---- ZL+ZO (2.1.9)

rs _

Z s -Z 0

z, +Zo (2.1.10)

The expression for v(x)

the source and load mismatches.

expansion of (2.1.5)

V s Z0

v(x)= _ [ e-YX+ FLC-Y(2L'x)+ FL

2 r e-V(4L-x)+r2Lr_e-Y(4L+x)+r L

includes the superposition of all waves reflecting from

This can be seen by a Taylor series

r e -y(2L+x) +
S

." ] (2.1.11)
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To obtain the shape of the pulse at the load, v(L) is evaluated at frequencies

from f=O to f=fc in discrete steps where fc is the cutoff frequency of the

bandlimited pulse. Now consider the case where the boundary voltage and

current are known on a section of transmission line as shown in figure 2.1.6.

t._l, L h,_.

w'--
I"_W

II, I III

II |

! !

v(O) ', ,'v(L)
!

i(O) _ _, i(L)
!

!

' _
| _ ,

! J

x= 0 v(x), i(x) x= L

Figure 2.1.6. Section of transmission line with boundary voltages and currents

From (2.1.5) it can be shown that knowledge of the voltage at x---0, v(0), allows

the voltage at any point along the line v(x) to be computed from the relation

v(x)_ e-yX1 + FLe-2y(x'x)
v(O)

I + Fie -2_ (2.1.12)

Similarly, the current at any point along the line i(x) may be computed by

i(x) = e-_X1 " FLe-2y(L'x)

i(O) 1 - FLe-2vL
(2.1.13)
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Thus, using (2.1.12) and (2.1.13) the voltage and current can be evaluated at

any point on the transmission line given the boundary voltage and current. With

the above preliminaries, a methodology for solving the simple network shown in

figure 2.1.7 is presented. In this figure, terminal planes, or nodes have been

labeled nl through n5. To solve this network, that is to obtain the voltage and

current at each node and at any location within the network, consider equation

(2.1.5). This equation suggests that if the impedance at node nl were known,

then the voltage and current at any location along the line can be calculated

using knowledge of the source voltage and impedance. The first step is to

obtain the impedance at nl. This impedance is seen to consist of the parallel

combination of the impedances looking into n5 and n2 from nl.

Figure 2.1.7. Simple transmission line network.

Consider the impedance looking into a single loaded transmission line as

shown in figure 2.1.8.
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I

J
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I

x=O

L
v

x=L

Figure 2.1.8. Input impedance of a loaded transmission line.

This impedance can be obtained from the relation [LePage]

1 + FLe-2v(Lx)
Zi_(x) = Zo

FLe-2_'(L-x) (2.1.14)1

The first step is to calculate the impedances looking into nodes n3 and n4 from

n2. The parallel combination forms the impedance at n2. The impedance at nl

is calculated by the parallel combination of the impedances looking into n2 and

n5. Therefore, the following methodology may be used to solve the network. In

the first pass, starting from the three loaded end nodes, the impedances are

calculated, and the parallel combination of these impedances at the parent

node forms the parent node impedance. Working backward in this manner, the

impedance at the root node (nl in the example) is calculated. Using (2.1.5) and

(2.1.6) the voltage and current at the root node nl may be calculated. Then

using (2.1.12) and (2.1.13) and the boundary voltages and currents calculated
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at the parent node, the voltage and current at each node in the network can be

calculated.

In the special case of propagation through layers of different media, there

are no branches. The transmission _ine analogy is illustrated in Figure 2.1.9.

source nl n2 n3 n4 n5

load

Figure 2.1.9. Network of cascaded sections.

In this case the impedance at node n5 is computed first. Next, the impedance at

node n4 is computed and so forth until the total impedance looking into the

network is obtained. In the next phase, the voltages and currents are computed

starting from the source, node nl, and then moving towards the load.

Advanced computer programming techniques which utilize recursion can be

implemented to efficiently perform these computations [Sobelman].

Transmission lines with a hundred thousand sections can be solved in only a

few minutes of CPU time on a DEC 3100 workstation. It was shown by (2.1.3)

and (2.1.4) that the plane wave propagation problem is equivalent to an

analogous transmission line problem. Utilizing the relationships between

transmission line parameters and those for plane wave propagation as

illustrated in table 2.1.1 allows the fields within a system of cascaded slabs to

be computed. In the next section, the accuracy of modelling inhomogeneous

media with cascaded slabs is analyzed.
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2.2 Accuracy of Modelling Inhomogeneous Media with Cascaded

Slabs

In this section the accuracy of modelling an inhomogeneous medium

with cascaded slabs is analyzed. Consider the transmission line illustrated in

figure 2.2.1 which has an exponentially tapered characteristic impedance.

x=0 x=L

Figure 2.2.1 Exponentially tapered transmission line.

As a specific example, let the source have an impedance of 100 _, the load an

impedance of 500 _, and total length of the exponentially tapered line be 10 m.

The exponential taper can be created with two wire cable whose geometry is

shown in figure 2.2.2.
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Figure 2.2.2

d

O O
D

Parallel conductor transmission line geometry.

The distance separating the pair of conductors is D and the radius of each

conductor is d. The characteristic impedance of this transmission line is [Brown]

= 120 In(2__D)Z 0 (2.2.1)(3

For the continuous exponential taper the normalized impedance anywhere

along the line Z(x) is related to the geometry and load impedance through the

relation

z(x)= "_ ZLoad] (2.2.2)

The exact differential equation relating the reflection coefficient to location along

the line is [Collin]

dr' = j213F - 1 ( 1- F2) d in Z(x)
dx 2 dx (2.2.3)

The exact solution to this Riccati differential equation for the input reflection

coefficient is

]"1=
A sin (BL/2)

B cos (BL/2) + j 213sin (BL/2)

In . A 2A=I L- B={4# (2.2.4)
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The normalized input impedance may be calculated from the input reflection

coefficient using the relation

Zin =
1 + Fin

1 - Fin (2.2.5)

In order to test the model, sections of two wire transmission lines were

cascaded. A comparison of the normalized input impedance as a function of 0

obtained from the cascaded slab model and the exact solution to the Riccati

equation (2.2.4 - 2.2.5) is shown in figures 2.2.3 and 2.2.4. The electrical length

of the line 0 is related to the wavelength ;_and line length L through the relation

0 = 13L=-_L
;_ (2.2.6)

The best comparison is shown in figure 2.2.4 which is an enlarged view of

figure 2.2.3. The simulation performed with 500 sections could not be

distinguished from the exact solution. The conclusion is that the cascaded slab

model produces the exact solution asymptotically as the number of sections is

increased. The reason for this asymptotic exactness is that the model includes

the effects of all reflections, not a simple approximation where second and

higher order reflections are neglected.
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Figure 2.2.3 Comparison of the normalized input impedance produced by the
cascaded slab model and the exact solution to the Riccati

differential equation.
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Figure 2.2.4 Detailed comparison of the normalized input impedance
produced by the cascaded slab model and the exact solution to
the Riccati differential equation.
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From this single evaluation of the accuracy of modelling an exponentially

tapered inhomogeneity, it remains unclear as to how many slabs are necessary

to model accurately an arbitrary inhomogeneous medium. It has been shown

[Richmond] that the error in modelling a frequency independent

inhomogeneous medium with cascaded slabs is bounded by the two

expressions

e(h) _<khmer (2.2.7)

f

e(h) _<khl_ r _/_r1--'1/4 (2.2.8)

!

where h is the slab thickness, k is the measurement uncertainty, _r is the

derivative of permittivity with respect to distance, and e(h) is the modelling error

relative to the measurement error. The error bound (2.2.7) simply shows that

reducing the step size reduces the modelling error. The more important of the

two equations is (2.2.8) which shows that the step size h should be reduced

when the slope of the permittivity profile is large (steep). This result obeys

intuition since any spurious reflection will lead to modelling error. Spurious

reflections will occur when the model produces discontinuities that are not

present in the medium being modelled. When the profile slope is large, more

slabs are needed to provide a smooth transition from one slab to the next. The

derivation provided by Richmond considers only media with permittivity greater

than one. Hence, the equations bounding the modelling error (2.2.7) and

(2.2.8) cannot be applied to plasma profiles, where the permittivity is less than

one. No error bound appears to exist in the literature for using cascaded slabs
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to model inhomogeneous plasmas. The derivation of such a bound remains as

future research stimulated by the work leading to this dissertation.

In order to model the plasma, the electron density profile is sliced into

slabs of varying thickness, each characterized by its complex permittivity

determined by (1.2.3). A dynamic slab thickness allocation algorithm should

allocate slab thickness inversely proportional to the magnitude of the derivative

of the dielectric profile with respect to distance as suggested by Richmond. This

constraint is required to maintain smoothness in the dielectric profile of the

model since the true inhomogeneous plasma has a continuous dielectric

profile, and any sudden discontinuity in the dielectric will cause spurious

reflections. With a plasma model, another consideration must be made. It is

important that the modeling error be relatively small in the vicinity of the turning

point. Therefore, considering slope and the turning point criterion, a dynamic

slab width allocation algorithm was developed which considers both criteria in

the allocation process. The algorithm is quite simple and is illustrated in figure

2.2.5. The number of sections per unit distance decreases linearly with

increasing permittivity for linear profiles. Only 85% of the total allocation of

sections are shown in the diagram. The remaining sections are evenly

distributed between the turning point and the end of the profile which is located

at a standoff distance of approximately 15 cm (see figure 1.2.1).
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Figure 2.2.5 Dynamic allocation of plasma model slab widths.

Figure 2.2.6 shows what happens with this distribution for three differently

shaped dielectric profiles. In the linear case, the slope is constant and

therefore there is a linear increase in sections per distance as the turning point

is approached. In the second case, the slope is near zero for nearly half the

distance to the turning point and then the slope becomes increasingly larger

(negative) causing the sections to compress nearer to the turning point. This is

precisely what is desired, since the slope is steepest near the critical distance

dc. The third case shows the resulting trade-off between slope and dielectric

value. The slope is large near the front edge of the profile and approaches zero

near the critical point. Thus, the algorithm allocates relatively few sections in
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the first few permittivity bins. However, this results in thinner slabs than would

occur for a linear taper due to the large, negative slope in the permittivity profile.

Then as the critical point is approached, the number of sections is increased

because the permittivity is decreasing. However, because the slope

approaches zero with increasing distance, the slab width actually increases

slightly as the plasma turning point is approached, and a slope/turning point

trade-off occurs as desired.

The total number of sections used in the slab model for accurate

representation of the plasma was determined as follows. For the particular CFD

profile used in the simulations, it was found that using more than 1000 sections

made very little difference in any of the measurements. In order to assure an

accurate plasma model for all measurement cases, 1500 sections were used in

all simulations. Using 1500 sections resulted in section sizes ranging from a

few microns to a few millimeters.

Although the cascaded slab model is capable of modelling accurately

planewave propagation in plasmas, it must be pointed out that there is one

significant drawback. In a physical measurement environment where the

transmitted EM energy is emitted near the plasma, such as in the MRIS

experiment, the resulting EM energy is not composed of planewaves. The

energy spreads with range and no account of this energy spreading is currently

provided by the cascaded slab model. Hence, one of the future research

objectives is to include the effects of spherical wave transmission through the

layers of media.
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Figure 2.2.6 Illustration of the algorithm which dynamically allocates slab
thicknesses in the plasma model for various permittivity profiles.
Tick spacing indicates the relative number of sections used in the
plasma model.
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2.3 Obtaining Impulse and Frequency Responses of Channels
Composed of Reflective Targets in Inhomogeneous Media

This section investigates the use of the cascaded slab model to obtain

impulse and frequency responses of channels in which a reflective target is

embedded in a dispersive, inhomogeneous medium. In each example, an

electron plasma is used as the inhomogeneous medium. The electron plasma

quantities used in the cascaded slab model are presented in table 2.3.1 [Chen].

Table 2.3.1. Electron plasma relationships used in the cascaded slab model.

Permittivity, n = electrons/cm3 E = eor.r = %( 1 81n)- zz

Intrinsic Impedance

Propagation Constant

Group Velocity

Plasma Frequency,

e = electron charge,

m = electron mass

Introduction of loss due to

collision frequency v

Attenuation Constant

rlo

y=_x+jf_=jto@3fi- 18-_:hz

doo= c-/1 _8111
Vg =

dp :V

e=_l

qoneav

2m (off+ va)
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As a first example, consider figure 2.3.1 which shows a constant density

electron plasma sandwiched between two layers of air. A metal plate is placed

against the second air layer. In this example, we are interested in the impulse

response at the boundary of the first slab where it is assumed that a packet of

plane waves is incident on the system. The electron density of the plasma is

44.5"1012 e-/cm3 corresponding to a critical frequency of 60 GHz.

AIR

_r=1
•., • • . ........

ANTENNA _!ii

AIR metal
PLASMA g r =1 plate

20cm ---II_------II_ _ _!
10 cm 10 cm

Figure 2.3.1 Channel composed of a constant density Ne = 44.5.1012 e'/cm 3
electron plasma sandwiched between two slabs of air and
terminated in a metal plate,

Two cases are now presented. In the first case, the impulse response

over a bandwidth of 20 GHz at a starting frequency of 40 GHz is considered. For

the second case, the same bandwidth is used but the beginning frequency is

increased to 100 GHz. In both cases 512 frequency samples were obtained,

which provides 1024 points in the resulting impulse response computed from a
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512 point IFFT. The impulse response corresponding to the first case is shown

in figure 2.3.2. The time domain data has been converted to the distance

domain using the free-space velocity of propagation. In addition, consideration

of the two-way travel time has been provided in the distance scale. Since the

frequency span is 40 to 60 GHz, a strong reflection is observed from the plasma

whose critical frequency is 60 GHz. The range to the reflection is 20 cm,

precisely as expected from the channel geometry (figure 2.3.1).

START FREQUENCY 40 GHz, BANDWIDTH 20 GHz

impulse response

O.20 .........................................................,....................•.................,..................,.......................................

i t
1 |

0.0 - _-" ..... T.,T..._:,.-,-.:,.;,_.._._.......... _............... L............... L ......... ._
% I

t ' ii

-0._0 .................. "_.............. .................. "$!............... ...-" ...................... _. .................. _. .................. ._ .................. ,

"_ reflec_on fror_ .........................................-o 4o .................._................................¢_;,;";2.;i;_",_;r...............
, ' bO._.ndary i._ |
i . ! !

' ; [ i- 0.60 .................. -:.....................................................i ...................................._.....................................i

' ' ' I ! S
i , , ! iI

•_ [ i

0 10 20 30 40 50 60 70 80 (cm)

Figure 2.3.2 Impulse response of electron plasma sandwiched between air
slabs and terminated in a metal plate. The starting frequency is
40 GHz.
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In the second case, the frequency span is from 100 GHz to 120 GHz. The

resulting impulse response is shown in figure 2.3.3.

START FREQUENCY 100 GHz, BANDWIDTH 20 GHz
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Figure 2.3.3 Impulse response of electron plasma sandwiched between air
slabs and terminated in a metal plate. The starting frequency is
100 GHz.

Most of the energy passes through the plasma because its critical

frequency is 60 GHz. However, there are minor reflections due to the dielectric

discontinuities at the air/plasma interfaces• At 100 GHz, the dielectric constant

of the plasma is _r = 0.64. The resulting reflections are shown in figure 2.3.3.

The distance to the main reflection is shown to be 40 cm which corresponds to
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the distance to the metal plate as indicated in figure 2.3.1. The velocity of

propagation within the plasma has been taken into account.

In the next example, an analysis of propagation through the CFD electron

density profile is presented. Consider the CFD profile shown in figure 2.3.4,

which has been scaled so that the critical electron density at 20 GHz is located

at a standoff distance of 4 cm. Note that the vertical axis is critical frequency

and not electron density. The relationship between these two quantities was

given in (1.2.4).
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Figure 2.3.4 Scaled CFD electron density profile for 4 cm standoff at 20 GHz
critical frequency.

This profile is placed outside the heat tile system of the AFE spacecraft which

was shown in figure 1.2.3 so that the standoff distance is zero at the outer

surface of the tile. The frequency response of the heat tile system and CFD

profile is shown in figure 2.3.5. The reflected energy is added to the transmitted

wave and forms an interference pattern. The sudden drop in reflected energy at

30 GHz corresponds to the maximum critical frequency in the CFD profile. The
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periodic behavior of the frequency response beyond 30 GHz is due to the

presence of the RCG only and its period is inversely proportional to the distance

from the antenna aperture plane to this source of reflection.

Plasma plus Tile/RCG Frequency Response
at the Source
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Figure 2.3.5 Tile/RCG and plasma frequency response as seen from the
MRIS antenna flange.

Figure 2.3.6 shows a close-up view of the frequency response between 20 and

30 GHz. The distance between the nulls in the frequency response decreases

as the frequency increases in an "accordion-like" effect. This is due to the fact

that the turning point is getting farther away from the source.
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Figure 2.3.6 Close-up of plasma frequency response showing reflections
from changing critical densities.

The next set of results provides great insight into the behavior of the

plasma. Consider figure 2.3.7 which shows the impulse responses obtained

using the cascaded slab model for the Tile/RCG CFD profile system using 64

frequency steps at 64 MHz intervals. This corresponds to the proposed

measurement sequence for the MRIS instrument. Each impulse response

corresponds to a different starting frequency as indicated. The frequencies are

stepped in 64 MHz increments up to 64 steps. Therefore, the bandwidth of each

measurement sequence is 4.096 GHz (64 x 64 MHz).
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Figure 2.3.7 Impulse responses of the CFD profile as the starting frequency is
changed.

The reflection from the plasma turning point moves outward, following the

profile, as the starting frequency is increased. The turning point reflection may

exhibit 180 ° phase shifts as in the case for 24 GHz. At 28 GHz, the top of the

profile is skimmed (see figure 2.3.4). At 30 GHz and beyond there are no more

plasma reflections. The only reflection is from the RCG, and all impulse

responses are basically the same. The impulse responses up to 40 GHz in 2

GHz steps were computed and are shown in the graph.

An interesting view of the data from figure 2.3.7 is provided by the three

dimensional plot shown in Figure 2.3.8. In this figure, all 15 impulse responses

are plotted up to 18 cm standoff as indicated. The reflections below 30 GHz
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start out close to the tile outer surface and then move out and eventually

disappear. As the frequency increases beyond 30 GHz, the impulse responses

all flatten out with no reflections other than those resulting from the tile.

impulse
response

O. 024
O. 01

-0. 10

s!ando starting
frequencydistance "_ _,/,/" 30

cm _ GHz

18 4O

Figure 2.3,8 3 dimensional plot of impulse responses of Tile/RCG and CFD
profile system as the starting frequency is changed.

2.4 Summary

A model for electromagnetic planewave propagation in inhomogeneous

media was derived in this chapter and its performance illustrated in the context

of modelling EM propagation in non-uniform electron plasmas. This model is

based on the theory of transmission lines and represents an inhomogeneous

medium by thin cascaded slabs, each of which is homogeneous but whose
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combined structure is inhomogeneous. It has been shown that as the thickness

of each slab is reduced, the response from the model asymptotically

approaches the true physical response. The model can be implemented very

efficiently using advanced computer programming techniques such as recursive

programming which allow the use of hundreds of thousands of slabs while

requiring little computation time.

Several simulation results have been presented in the context of

measuring non-uniform electron plasma densities that develop near the heat

tiles of a space re-entry vehicle. Unfortunately, an appropriate plasma profile

cannot be produced for ground testing. Hence, with the exception of performing

an actual atmospheric aeropass, their measurement can only be performed by

computer simulation. For this reason, the inhomogeneous media model

derived in this chapter, which can simulate accurately the propagation of

planewaves in electron plasmas, is especially significant.
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Chapter 3

The Frequency-Stepped Double Sideband
Radar System t

Suppressed Carrier

3.1 Introduction to the Frequency-Stepped DSBSC System

The double sideband (DSB) radar system derived and demonstrated in

this chapter is a reformulation of the Amplitude Modulated CW radar system

developed in 1962 [Nilssen]. Both systems extract target range information by

observing the phase delay of the echo signal. The idea of using phase

information to extract target range was first introduced in 1947 [Riden] during a

time in which much effort was spent by scientists from several fields who joined

in an effort to promote the development of practical radar systems. The AM CW

radar technique has received little attention since its introduction in 1962,

because the system requires the echo from the primary target to be much

stronger than any other echo. The presence of an interfering reflection

rendered the target range estimate useless. The DSB technique derived in

section 3.2 can operate in the presence of an interfering reflection. It is shown

that accurate target range may be extracted for virtually any signal-to-

interference ratio (SIR). This immunity from weak target echoes is achieved by

frequency-stepping the suppressed carrier and obtaining a sequence of phase

measurements. The original formulation used only a single carrier frequency

and for this reason was unable to mitigate the unwanted affects of interference.

A field closely related to radar is remote sensing of the atmosphere.

There exists a region of the atmosphere called the ionosphere which is

1" Thischapterappeared,withcertainmodifications,In [Ybarra2].
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characterized by a large number of oxygen and nitrogen ions resulting from

solar radiation. The density of these ions is great enough to affect the

propagation of radiowaves. The ionosphere begins at an approximate altitude

of 50 km and reaches a maximum ion density at approximately 80 km. It has

several unusual EM wave propagation properties. One of these properties is

that it reflects radiowaves with certain frequencies somewhat similarly to a

conductor. This reflection property allows certain radio frequencies to "skip" off

the ionosphere and travel literally around the globe. Because the ionosphere

plays such an important role in radiowave communication, remote sensing of

the atmosphere has remained a highly active area of research for more than 30

years [Davies1,2,3]. The primary process currently in use for measuring the ion

density of the ionosphere is the ionosonde. Ionosondes are performed from

both terrestrial sites as well as from satellites. There are two primary methods

of measurement: (i) measurement of the time delay of a pulse and (ii)

determination of the stationary phase. The direct measurement of pulse delay

is done by starting a timing device (e.g. cathode ray oscilloscope time base or a

digital clock) when the transmitter is triggered and noting the time of the leading

edge of the echo pulse(s) [Davies3]. Uncertainties arise in identifying which

feature on the pulse envelope to use as reference. Even with a relatively

square emitted pulse, ionospheric dispersion tends to produce a triangular or

trapezoidal shaped echo. In some cases increased accuracy is obtained by

using Gaussian-shaped pulses [Devlin]. However, time accuracy is limited to 1

ps which corresponds to 0.3 km of virtual height. Because of this inherent

accuracy limitation, the time delay method is impractical for short range radar

systems.
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The phase approach is based on the relationship between phase and

time delay which is also the basis for the derivation of the stepped DSB

technique presented in the next section. In this ionosonde method, a single

frequency sinusoidal signal is transmitted into the atmosphere and the phase of

the echo is compared to the phase of the sinusoid produced by the generator.

From knowledge of the frequency and velocity of propagation, the distance to

the reflection point can be estimated. Although this technique is impractical for

target ranging in general radar applications for the very same reasons the AM

CW radar failed, it provides another example of using phase measurements to

obtain the range to a reflective target.

There are two currently existing short range radar systems which are

somewhat similar to the DSBSC technique and are used for automotive radar

[Boyer, Grimes]: the Diplex Doppler method and the Sinusoidal FM method. In

the Diplex Doppler method, the transmitter is time-shared between two closely

spaced frequencies. The phase difference between the two slightly displaced

Dopplers at the receiver depends on the range to the target. However, since

the range is extracted from the phase difference in the Doppler signal, no

information is obtained without significant target velocity.

The Sinusoidal FM technique extracts the target range from the relative

phase of the received signal which does not depend on target speed.

Unfortunately, the Sinusoidal FM system is relatively complex to implement

[Grimes]. The advantage of the DSBSC technique is that it is simple to

implement, requiring minimal hardware and space, while providing accurate

target distance estimates. An important additional advantage of the frequency-

stepped DSBSC system over other techniques such as a stepped-carrier
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technique that generates an impulse response and uses range-gating to

separate the target from an interferer is its immunity to Doppler shift due to

target motion. The relative Doppler immunity of the frequency-stepped DSBSC

technique is due to the fact that the effective Doppler shift is at twice the

modulation frequency which is much smaller than the microwave carrier.

3.2 Derivation of the Frequency-Stepped DSBSC Technique

The DSBSC distance measurement technique is based on the

relationship between the phase response and time delay of a linear system.

For a linear system, the time delay is the negative slope of the system phase

response and is therefore, in general, a function of frequency.

td= de(_o)
d_o (3.2.1)

In the time domain, the simplest realistic model for the impulse response of a

propagation channel known to contain an interfering reflector and a highly

reflective target is given by

h(t) = Ap_(t-tdp) + A_(t-tdi) (3.2.2)

where 5(t) is the Di,rac OeEa, tu.w'..t,i_,, _t:_r&t.dp _rl tdi _e the round trip time

delays to the primary target and interfering reflector respectively. The constants

Ap and Ai represent the combination of path loss and reflection coefficient

associated with each reflector. This model assumes that a transmitted

microwave energy burst will return primarily as two temporally concentrated
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pulses. Simulation results presented later show that the result of using this

assumption is accurate for the plasma measurement application.

The frequency response associated with a channel whose impulse

response is given by (3.2.2) is

H(t')= Ape'J(.°tdp+ Aie'J_tdi (3.2.3)

where _ = 2_. Separating H(f) into its real and imaginary parts yields

H(0 = ApCOS(cOtdp)+ Aicos(cotdi)- j [Apsin(cotdp)+ Aisin(o_tdi)] (3.2.4)

The phase of this frequency response function is

_ n.1/-(Apsin(_tdp) * Aisin(_tdi))_e(f) = Ja .......
ApCOS(00tdp) + Aicos(_tdl ) )

The phase response may be expressed in the alternate form

+ tan.lI Aisin(27rf(tdp- tdi)l) 11e(f)
12_p

(3.2.5a)

(3.2.5b)

The negative derivative of the phase response (3.2.5a) with respect to angular

frequency oois the channel time delay and is given by

td

P

1 +(Apsin(o_tdp)* Aisin0.otdi) 12

_ApCOS(_otd p) + Aicos(o_ tdi) } (3.2.6)
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where

(3= C + D

[ApC°S(°°tdp) * Aic°s(_tdi)l 2 (3.2.7)

C = IApCOS(O0tdp)+Aicos(ootdi)lIAptdpCOS(_tdp)+ AitdiCOS(_tdi) ]

D = [Apsin(etdp)+Aisin(_tdi) ][Aptdpsin(_otdp)+Aitdisin(etdi) 1

(3.2.8)

(3.2.9)

Using the definition
,%

(X'----

,_ (3.2._0)

which is the signal-to-interference ratio (SIR), and elementary trigonometric

identities, the expression for the channel time delay (3.2.6) may be simplified to

t_- a2t_P+t_+a(t_p+td_)COS(2_(tdp-t_))
1 +a2+2aCOS(2"Kf(tdp - t_i)) (3.2.11)

This function is periodic in frequency with period

tdp- t_i (3.2.12)

Thus, one mechanism for determining the distance to the primary target is to

estimate the period of the group delay measurement. Since the time delay to

the interfering RCG coating tdi is known a priori, the period (3.2.12) of the

measured group delay yields the delay time to the plasma turning point trip.

Using an estimate of the average energy propagation velocity for the plasma

enables tdp to be converted into a distance measurement. It will be shown
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through simulation that this method of extracting the turning point location may

lead to accurate range estimates.

A previously reported method of extracting the turning point standoff

distance using the frequency-stepped DSBSC approach [Hearn] is to average

the phase measurements, or equivalently the time delay measurements. The

average time delay may be derived analytically by integrating the time delay

expression (3.2.6) over one period and dividing the result by the period. The

expression for the time delay (3.2.6) has the form

f(x) - a+bc°s(x)-

c+dcos(x) (3.2.13)

where the following substitutions have been made:

a = a2tdp + _i, b = a(t_p + tdi), C = 1 + a 2, d = 2a, x=2/rf(tdp - tdi).

Given the fact that c2 ;_d 2 for all a, the integral of f(x) over one period is

a+bcos(x) dx = +

c+dcos(x) ¢ c2- d2
__ Tan- 1(_c2 ":: :an(_-) )1

7r

-_ (3.2.14)

The proof of this antiderivative is presented in the appendix. Evaluation of

(3.2.14) and dividing by the period 27r yields the average value fay given by

a.bC

fay= f(x) dx = _ _/C2 . d 2
(3.2.15)
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Now resubstituting the coefficients a, b, c, and d yields the average time delay

tdav given by

tdav = _tdp+ tdl + °c2tdp + tdi - (-_ + _i2X1 +a 2)

2 2-11 (3.2.16)

This expression may now be simplified to yield the result

+ a2- 1... t i))tdav = _--(tdP+ tdi _-G-_-.-i_t__oP
(3.2.17)

which may be further simplified to obtain the following final result

tdav=tdp a>l, tdav=tdi a<l (3.2.18a)

The result for the special case of e=l may be obtained by substituting this value

directly into (3.2.11). After simplification, the average time delay for this case is

tdav = tdp + tdi
2 (3.2.18b)

The analytical results derived here for the time delay obtained using the

DSBSC technique may be interpreted as follows. If the plasma reflection is

stronger than the reflection from the interfering RCG (oc> 1), and if an accurate

technique for extracting the average phase is employed, then the turning point

may be established. If the SIR is less than one (a < 1), and phase averaging is

employed, an erroneous estimate of the turning point will result. It has been

analytically shown, however, that an accurate estimation of the turning point

may be extracted from the phase measurements using the relation between the
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group delay period (3.2.12) and the time delay difference tdp - tdi, regardless of

the signal-to-interference ratio. This result shows the potential immunity of the

DSBSC technique to a weak primary target reflection.

The theoretical phase measurement, assuming two scatterers, has been

shown to be

_ .1( o (Apsin((.Otdp) + Aisin((Jotdi))_
9(f) = Nan t ...... -

_, ApcOS((.Otdp)+ ,_COS(eOtdi)J (3.2.5a)

Plots of the theoretical phase (3.2.5a) over a 4 GHz bandwidth, beginning at 18

GHz, for various SIR's are shown in figures 3.2.1a-d for the two scatterer

idealization of the propagation path of figure 1.2.2 with the plasma critical

density at 9 cm for 20 GHz (an average group velocity of c/2 has been assumed

for the plasma).
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Figure 3.2.1 Theoretical frequency-stepped DSBSC phase measurement
assuming two scatterers and SIR > 1. (a) 4 GHz bandwidth
(b) 600 MHz bandwidth.
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Figure 3.2.1 Theoretical frequency-stepped DSBSC phase measurement
assuming two scatterers and SIR < 1. (c) 4 GHz bandwidth (d)
800 MHz bandwidth.
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Several important observations can be made from these graphs. First of all,

figures 3.2.1a-b show that if the interferer is absent, the SIR a----oo,and the phase

is linear due purely to the primary target reflection. As the SIR deteriorates

approaching unity from above, an oscillation about this linear phase occurs with

increasing amplitude and may be seen most clearly in figure 3.2.1b which is an

enlarged view of figure 3.2.1a. However, the periodicity of this oscillation does

not change with SIR except in the extreme case a ----oo.Figures 3.2.1c-d illustrate

a similar phenomenon for cases of SIR's between 0 and 1. When a=0, the

phase becomes linear once again, and this is due purely to the interfering RCG.

Note that the periodicity of the oscillations, once again, does not vary with SIR.

When the SIR is identically equal to 1, the phase function will converge to a

linear phase with an intermediate slope exactly half way between the extreme

cases of a=0 and a=l, exactly as predicted by the theory developed earlier. It

has been shown analytically that the periodicity of the oscillation about the

linear case has a period which is the inverse of the difference in time delays to

each scatterer. This relation is indicated in figures 3.2.1a and 3.2.1c, and

special note should be made that this period is constant, independent of SIR.

The time delay may be calculated from the phase response by

differentiating with respect to 00 and then may be converted into a distance

measurement as a function of frequency using an average plasma velocity.

Using an average plasma velocity of c/2, several theoretical distance

measurements using the same 4 GHz bandwidth as was used in figure 3.2.1

are shown in figure 3.2.2 for various SIR's.
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Figure 3.2.2 Theoretical distance measurements as a function of frequency

for the frequency-stepped DSBSC system.

It has been proven that if the SIR is greater than one, then the average value of

the distance function for any SIR is the primary target distance. Furthermore, it

has been proven that if the SIR is less than one, then the distance function has

an average value equal to the distance to the interfering RCG. Averages were

taken for each of the distance functions shown in figure (3.2.2). When the SIR is

such that the deviation from the mean value is small (a near oo or a near 0),

then only a few points need to be averaged in order to obtain an accurate

estimate of the average. However, when the SIR approaches unity from above
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or below, many points are required for an accurate estimate of the average.

This is due to the near cusps that develop at the function extrema. The

periodicity is shown to contain the standoff distance information as expected

from the theoretical derivation. An important point must be made regarding the

process of averaging the distance measurements. Accurate estimates require

that an integer number of half periods are averaged or that a large number of

half periods be averaged. When the target and interferer are far apart, several

periods are present. When the target is near the interferer, the period

approaches zero which may cause an inaccurate distance measurement using

the distance averaging approach especially if the SIR is near unity and only a

relatively small number of measurements are averaged. In this case, it is

fortunate that the distance information may still be extracted from the periodicity

of the phase measurements, even when the oscillation is weak.

3.3 The Frequency-Stepped DSBSC Radar System Block Diagram
and Principles of Operation

The Frequency-Stepped DSBSC system simultaneously transmits two

sinusoids centered around the suppressed carrier. The differential phase shift

between these two sidebands induced by the propagation channel is then

measured at the receiver producing an incremental estimate of the slope of the

phase response. This estimate of the phase response slope is the estimated

group delay. A measurement is made at N discrete frequencies, spanning a

total bandwidth of NAf, where Af is the frequency step size. An implementation

of the DSBSC system is shown in figure 3.3.1.
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Figure 3.3.1 Block diagram of the frequency-stepped DSBSC radar system.
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The transmitter consists of an upper single sideband frequency-stepped carrier

generator whose output is modulated by another sinusoid of frequency fM" The

received echo is passed through a square-law device and bandpass filtered to

extract the component at frequency 2f M produced by the square-law device

since it is this tone that contains the phase differential 02-01 where e2 and 01

are the channel induced phase shifts of the upper and lower sidebands

respectively. This signal is then simultaneously mixed with an in-phase and

quadrature sinusoid at frequency 2f M, phase coherent with the modulator in the

transmitter. After low-pass filtering, the result is a pair of quadrature signals

from which the phase differential 02-61 may be extracted via a four quadrant

arctangent operation. The round-trip group delay estimate td is obtained from

the phase difference by

t_= de(_o),_.02-e_ = 62-01
de 002-_1 47rfM (3.3.1)

The maximum unambiguous range corresponds to a 27r variation in 62-61 and

Rmax= lvg_ = --¢--
8fM

is given by

(3.3.2)

using an average plasma velocity of c/2. Since it is desired to measure electron

densities with standoff distances from 0-15 cm, we chose to use fa = 125 MHz in

our simulations which provides a maximum unambiguous range of

approximately 30 cm from the antenna aperture. The range equation (3.3.2)

dictates an upper bound on fM" The smaller the value of fM' the better the
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differential phase approximates the true slope. However, as the value of fM is

reduced, the phase differential corresponding to a particular standoff distance

decreases. Therefore it becomes increasingly difficult to resolve small standoff

distances as fM is decreased.

The block diagram of the DSBSC system presented in figure 3.3.1 shows

the system exactly as implemented using CAPSIM, a hierarchical block diagram

communication and signal processing simulation environment. The block

stairgen creates a sequence of samples with a staircase amplitude which drives

the digitally-controlled oscillator DCO to produce the discrete frequency sweep

of N steps over a bandwidth of N_,f. The block in figure 3.3.1 labelled Target in

inhomogeneous medium utilizes the inhomogeneous media model derived in

Chapter 2.

It still remains to be shown whether the two scatterer theory developed in

section 3.1 is applicable to the much more complex vacuumltileiRCGIplasma

propagation path which was shown in figure 1.2.2 (pg. 8). Simulation results

will now be presented which show that the theory is indeed applicable.

3.4 Simulation Results for the Frequency-Stepped DSBSC System

In order to illustrate the performance of the frequency-stepped DSBSC

system, consider the CFD electron density profile shown in figure 1.2.1 (pg. 5)

scaled so that the critical density at 140 GHz is located at a standoff distance of

9 cm. Using N=64 measurements with a frequency step-size of t_f--64 MHz, the

DSBSC system produced the distance measurements shown in figure 3.4.1.
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Figure 3.4.1 Distance measurements using the frequency-stepped DSBSC
radar system with and without loss caused by plasma collisions.

When no loss due to collision is included, the group delay is captured by the

primary target because the reflection from the plasma is stronger than the

reflection from the RCG interferer. However, when loss is included in the

simulation, the reflection from the RCG is much stronger than the plasma

reflection and the group delay measurement is captured by the interfering RCG.

The SIR in this case is approximately 0.1 (-20 dB). This SIR value was obtained

by using a stepped CW technique and comparing the relative strengths of the

plasma and interfering RCG reflections in the time domain. The averaging

technique described in [Hearn] would work if no collision were present,
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although producing an error of 0.5 cm (i.e. the average value of the no-collision

curve is 12.70 cm). However, the averaging technique will fail in the more

realistic case which includes path loss due to collision. Fortunately, the

information containing the location of the plasma target is present in the data

periodicity whether or not loss is present. It was shown in (3.2.12) that the

fundamental frequency of the measurements shown in figure 3.4.1 is the

difference in the time delays to the primary target and interferer assuming the

simple two scatterer model. There exist several ways to extract the fundamental

frequency from the N data points available from a given measurement sweep.

The next section examines the use of autoregressive analysis on the group

delay measurements to obtain the target range.

3.5 Autoregressive Signal Processing of the Frequency-Stepped
DSBSC Data

One approach to extracting the fundamental frequency from the N data

points available from a given measurement sweep would be to take an N-point

Discrete Fourier Transform (DFT) of the data. The time resolution resulting from

an N point DFT of the frequency-stepped DSBSC distance data is

At- 1
2NAf (3.5.1)

Using an approximate average plasma group velocity of c/2, the one-way

distance resolution is

Ad = lc At- C
2 2 8NAf (3.5.2)
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Using N = 64 and _f = 64 MHz, a distance resolution of _d = 0.9155 cm results.

An alternative analysis technique is now presented for estimating the

standoff distance from the periodicity of the distance measurements. It is based

on autoregressive time series analysis [Kay81,88] which has been applied to

high resolution spectral estimation. As will be shown, time series analysis may

provide a significant resolution improvement in standoff distance estimates over

that obtainable using the Fourier approach.

Consider the near periodic sequence of distance measurements shown

in figure 3.4.1 to be approximated by the difference equation

3

d(n) = _ akd(n-k) + u(n)
k=l (3.5.3)

n = mAf 0_<_m_<63

where d(n) is the sequence of distance measurements, a k are the

autoregressive coefficients, and u(n) is the innovation or input driving function.

Thus, d(n) is being modeled as the response of a linear system whose output is

the innovation plus a linear combination of the past 3 outputs. Such a model is

called an autoregressive (AR) model of order 3. A third order autoregressive

model was chosen because a single peak in the time response is expected

which _equires two complex poles in the model. The other parameter is used to

model deviation in the phase measurements from a pure sinusoid. In

conventional time series analysis d(n) would be, typically, discrete samples of a

continuous-time function d(t). Here, the d(n) are discrete samples of a

continuous-frequency function d(f). If the discrete-time Fourier Transform of

(3.5.3) is taken, a continuous complex function of time results.
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3

D(e]t,_0t,,_)= _ akD(e_t"_)e -j_=t'"_ +
k=l (3.5.4)

U(eJA_t,_,.) Ao_= 2_'/kf

where tdi ff = trip - tdi. The system time response (output D over input U) may be

obtained from (3.5.4) resulting in

R(td,.) =

1- _ ake "jkAct_
k=l (3.5.5)

which is once again a complex function of time. In order to illustrate the value of

this approach, the time series model (3.5.3) was applied to the collision

distance data of figure 3.4.1. The autoregressive coefficients a k were extracted

using a conventional least-squares approach [Kay81,88]. These coefficients

were then substituted into (3.5.5) and the resulting squared magnitude is shown

in figure 3.5.1. The delay estimate is 1.203 ns as shown in the figure and

translates into a standoff estimate of 9.0225 cm, producing an error of only 225

pro. It should be noted that (3.5.5) is a continuous function of time and does not

suffer from the resolution problem which plagues the FFT approach when only a

short data record is available. It is recognized that the example presented is

somewhat optimistic since neither noise nor the effects of some component

error contributions were included in the simulation. The simulation does

include non-ideal filter responses but does not incorporate the effects due to

mixer imbalances. The plasma model accounts for reflections that occur at the

vacuum-tile interface in addition to the reflections at the RCG boundaries.
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Figure 3.5.1 Spectrum obtained from an autoregressive time series analysis of
the group delay measurements made by the frequency-stepped
DSBSC radar system.

The intention of the example is to illuminate the fact that the technique of

applying AR time series analysis to the frequency-stepped DSBSC

measurements can be used to extract an accurate target distance estimate even

when the SIR is significantly less than 0 dB. In our application of measuring

electron plasma densities, a worst case Signal-to-Noise ratio (S/N) of 30 dB is

expected at the inputs to the in-phase and quadrature detectors, and S/N ratios

of 50-70 dB are expected for most measurements. Hence, it is not expected that

noise levels will be large enough to significantly degrade performance in the
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MRIS measurements. In other short-range radar problems, noise may be a

significant problem and a more sophisticated spectral estimation approach such

as an autoregressive moving average approach (ARMA) [Kay81,88] may be

required.

It has been shown that autoregressive time series analysis can be used

to measure accurately the period of the distance measurements made by the

DSBSC system. The example presented shows that even when the SIR is

significantly less than 0 dB, and the averaging technique fails as expected, the

high resolution autoregressive estimator can provide an accurate distance

estimate based on the simple two scatterer theory.

3.6 Summary

A new formulation of the frequency-stepped double sideband

suppressed carrier radar system has been presented. With certain

modifications, this chapter appeared in [Ybarra2]. The newly derived system is

an extension of the amplitude modulated (AM) CW technique [Nilssen] that was

introduced initially in 1947 in [Riden]. The AM CW technique was abandoned

because severely erroneous target range estimates were obtained when an

interfering reflection was present. The main contribution of this chapter is the

inclusion of the effect of an interfering reflection in the derivation of the DSBSC

system. It is shown that the interference can actually be used as a reference

allowing accurate target range estimates to be extracted from the radar data,

independent of signal to interference ratio.
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Simulation results were then presented in the context of measuring

electron plasma densities that develop near the heat tiles of a space re-entry

vehicle. The inhomogeneous media model derived in Chapter 2 was used to

model EM propagation in the heat tile as well as the continuously tapered CFD

predicted profile. The results illustrate that the DSBSC radar system is capable

of accurate target range estimation even when the echo from the target is much

weaker than the echo from the interferer.
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Chapter 4

The Frequency-Stepped Continuous Wave Radar System

One of the most prevalent techniques for characterizing a network is to

measure its response to several, different frequency sinusoidal signals. A few

broad-class examples of the many applications which utilize this technique are

measurement of transmission line discontinuities [Dworsky], bandwidth

measurements [HP], and s-parameter determination of two-port networks

[Collin]. There are two main reasons for the widespread use of this approach.

First, frequency response measurements are easy to perform. All that is

required is a source which generates sinusoidal signals (an oscillator) and a

detector which measures the amplitude and phase of the response. Second,

the frequency response of a linear, time-invariant network uniquely

characterizes the system [Glisson]. Knowledge of a system's frequency

response allows the computation of its response to any stimulus. These two

factors combined have led to the production and use of literally thousands of

network analyzers [HP].

One of the primary objectives of a radar system is to determine the

distance, or range, to one or several targets. Target range may be extracted

from samples of the radar channel frequency response. This chapter presents

an implementation of a radar system currently in use [Artech87] which employs

a frequency-stepped CW approach to obtain measurements of the radar

channel frequency response. There are two main objectives of this chapter.

The first objective is to describe the mechanism by which frequency response

samples are measured using the frequency-stepped CW approach. The
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underlying principles of the stepped CW system are presented as the basis for

the optimal signal processing algorithm derived and illustrated in Chapter 5.

The second objective of this chapter is to illustrate the use of the

inhomogeneous media model derived in Chapter 2 to simulate the

measurement of non-uniform plasma densities using the frequency-stepped

CW system.

4.1. Introduction to the Frequency-Stepped CW System

The physical data measured by the frequency-stepped CW radar system

is a sequence of complex reflection coefficients as seen from the terminal plane

to which the system is calibrated. The electric field reflection coefficient is

defined by [Collin]
E

[,=_jr
El (4.1.1)

The reflection coefficient is, in general, a function of frequency and may be

interpreted as samples of the channel frequency response H(jo_). Frequency

response for electric circuits is defined in general to be the ratio of the phasor

output (voltage or current) to the phasor input (voltage or current). The

analogous definition for EM waves is the ratio of the phasor output (electric field

or magnetic field) to the phasor input (electric field or magnetic field). In the

case of the reflection coefficient as frequency response, the output phasor

quantity is the reflected electric field intensity Er and the input phasor quantity is

the incident electric field Ei.
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In the frequency-stepped CW system, a sinusoidal microwave or

millimeterwave source (e.g. Gunn diode [Collins]) is used to generate the

starting frequency fstart of the measurement sequence. This carrier frequency is

then mixed with another, lower frequency sinusoidal signal whose frequency is

stepped in equally spaced increments _,f. The frequency mixing performed in

the transmitter is done in such a way as to produce an upper single sideband,

frequency-stepped carrier whose frequency sequence is fstart + iAf (i = l-n).

The radar system is calibrated at a convenient terminal plane so that no

reflection is measured at any measurement frequency when the system is

terminated in a matched load. When a physical radar measurement is made,

an interference pattern in the fields is created at the terminal plane to which the

system is calibrated. This interference pattern is the resulting sum of the

transmitted and reflected waves and is physically observed as the reflection

coefficient at the terminal plane. The reflection coefficient is measured at each

of the n discrete frequencies. Once the sweep is complete, a set of n

measurements of the reflection coefficient, or frequency response, has been

extracted. The remainder of this chapter examines this frequency response

extraction process for a particular CW system implementation, and its

performance is illustrated through simulations which employ the

inhomogeneous media model derived in Chapter 2. The simulations utilize the

standard IFFT approach to transforming the frequency domain data to the time

domain, from which the target range is estimated. It is shown that the IFFT

produces target range estimates which may contain a high degree of

uncertainty. This range uncertainty produced by the standard IFFT approach is

part of the motivation for the development of the new optimal signal processing
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approach presented in Chapter 5. The main motivation for using the

optimization approach is the poor resolution achievable using the IFFT. This is

clearly demonstrated in Chapter 5 where experimental measurements made

using a physical frequency-stepped CW radar system are analyzed using both

the standard IFFT approach and the new optimal signal processing algorithm.

4.2. The Frequency-Stepped CW Radar System Block Diagram

and Principles of Operation

The block diagram of the frequency-stepped CW system is shown in

Figure 4.2.1, and is the configuration, except for the channel model, proposed

by Electromagnetic Sciences [EMS]. The system operates as follows. Stairgen

generates a staircase signal which drives the digitally controlled oscillator rico

producing both an in-phase and quadrature sequence of sinusoids whose

frequency is stepped from Af to 2_,f to 3_,f, ..., through nAf. This frequency-

stepped signal then modulates the in-phase and quadrature carrier. The mixed

quadrature components are multiplied by -1 and summed with the mixed in-

phase components producing an upper single sideband stepped carrier signal

which is launched into the channel. The generation of the upper single

sideband carrier is based on the trigonometric relation

cos(2_ct)COS(27r&fmt) - sin(2_ct)Sin(2_Afmt) = cos[2_fc+ &fm)t] (4.2.1)

The received signal is then beat against the carrier and filtered to retrieve the

baseband frequency-stepped signal.
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Figure 4.2.1 Block Diagram of the frequency-stepped CW radar system.
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The coherent detector, which includes a lower single sideband generator, is

then used to extract the in-phase and quadrature components of the frequency

response data. Thus, the frequency-stepped CW system launches a sequence

of n distinct unmodulated carriers into the channel, and the resulting induced

gain and phase shift of the echo is measured by the receiver at each of the n

frequencies. The system actually measures the in-phase and quadrature

components of the echo which provide equivalent information.

The amount of time spent on a single frequency step is called the step

dwell time and its inverse is called the Step Repetition Frequency (SRF). The

dwell time must be long enough so that the transients in the receiver filters have

decayed sufficiently for steady-state measurement, and short enough so that the

target does not move significantly during the n measurements.

At the end of the n measurements, a set of n pairs of discrete frequency

response data has been acquired. If the frequency change between steps is _f,

then the total bandwidth over which the measurement is made is n_f. Using the

standard approach, this finite bandwidth frequency response data is then

converted into the time domain via an inverse Discrete Fast Fourier Transform

(IFFT) to obtain an estimate of the channel impulse response. Through

knowledge of the media dimensions and dielectric values through which the

energy must propagate, the time domain impulse response may be converted

into a distance domain impulse response. This distance domain impulse

response usually possesses a peak value at the location of target. It will be

shown in Chapter 5, however, that the IFFT is unreliable when the bandwidth is

small and/or the target must be distinguished from an interfering reflection at

approximately the same range as the target.
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The next section presents the results of a computer simulation of the

frequency-stepped CW system measuring the range to a specific electron

plasma density using the cascaded slab model for the CFD plasma density

profile.

4.3 Simulation Results for the Frequency-Stepped CW System

This section presents the results for a single simulation of the frequency-

stepped CW system. It is intended to illustrate the use of the cascaded slab

model for inhomogeneous media derived in Chapter 2, as well as some of the

basic principles of using the IFFT to process the frequency domain data. The

particular simulation presented employs the same channel and measurement

bandwidth as was used to demonstrate the performance of the frequency-

stepped DSBSC system derived in Chapter 3. Thus, a direct performance

comparison of the two radar systems is possible by comparing the two target

range measurements. Further results are presented for the stepped CW system

in Chapter 5.

Consider the CFD profile of figure 1.2.1 scaled so that the critical electron

density for 140 GHz is located at a standoff distance of 9 cm. In addition, let this

plasma profile exist in the MRIS propagation path illustrated in figure 1.2.3. The

time domain impulse response obtained using the IFFT on 64 measurements

made by the frequency-stepped CW system over a bandwidth of 4 GHz,

centered at 140 GHz is shown in figure 4.3.1. In this figure, there are actually

two data sets plotted. The bar graph is the result of a 64 point IFFT of the 64

complex frequency domain samples using a rectangular window. The

continuous plot is the result of a 16, 384 point IFFT of the 64 frequency samples
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padded with 32,704 zeroes (total IFFT length is 32,768 points). The zero-

padding serves to interpolate between the time samples of the 64 point IFFT

[Kay88] as illustrated in the figure. Using the dimensions of the vacuum, heat

tile, and RCG coating, as well as their permittivities, the two-way travel time to

the outside surface of the RCG coating is calculated to be 0.25 ns. Using c/2 as

an approximation for the average group velocity in the plasma, a 9 cm standoff

distance corresponds to a two-way travel time of 1.203 ns. Hence, the time

delay for the reflection from the plasma turning point is 1.453 ns. Examining the

IFFT impulse response of figure 4.3.1 for this reflection it is evident that the exact

reflection point is uncertain. The pulse resulting from the plasma has a peak

value at a time delay of 1.38 ns. Using this value as the time delay to the

turning point, its range is calculated to be 8.475 cm standoff. The

corresponding range error is only 5.25 ram. However, it is not clear that the

peak in the impulse response should be at the turning point time delay because

the pulse is not distinct. It is smeared in time due to the finite, 4 GHz bandwidth

measurement window. The time domain impulse response is the result of the

convolution of an impulse due to the reflection and a sinc* pulse due to the

rectangular window. The sinc pulse is the IFFT of the rectangular window

whose width is the measurement bandwidth of 4 GHz [Kay88] and is given

analytically by

Fw(jc0) = Ksin(2_'109t)
27r.109t

= Ksinc(2_.109t)

(4.3.1)

where K is a constant. The time width of the main lobe of this sinc function is

* sinc(x)is the sine-cardinalfunction andis defined here to besinc(x)-
sinx
X

76



= 2 9 = 0.318 ns
Atl°be 2_'10

(4.3.2)

This sinc pulse is convolved with every impulse due to each reflection. If the

simplifying assumption is made that there are only two reflections, one from the

RCG and the other from the plasma, then the impulse response should consist

of the sum of two sinc functions each with a main lobe width of 0.318 ns. These

sinc pulses should be centered at 0.25 ns (RCG) and 1.453 ns (plasma). The

sinc pulses are clearly present in the impulse response of figure 4.3.1.

However, these sinc pulses interact. That is, the energy from the sidelobes of

one sinc function interferes with the other sinc function. Consequently, the peak

values of the two sinc pulses are biased away from their values that would be

obtained with no interference present. This is the analytical explanation for the

resolution and accuracy deterioration in the ability of the IFFT to extract target

range as the bandwidth of the measurement is decreased. As the bandwidth of

the measurement is decreased, the sinc functions spread out in time inversely

proportional to the bandwidth. As the energy of the sinc pulses spread out in

time, the pulses interfere with one another, causing the locations of the peaks to

change. Furthermore, if the bandwidth is reduced to a small enough value, the

two sinc pulses will merge into a single pulse and the distinction between two

targets is lost. This phenomenon is carefully examined in the next chapter.
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Figure 4.3.1 Impulse response obtained from 64 measurements of the MRIS
plasma channel frequency response generated by the frequency-
stepped CW radar system. The 64 point IFFT is shown along with
a zero-padded 16,384 point IFFT.

4.1. Summary

This chapter has presented an implementation of a radar system

currently in use [Artech87] which employs a frequency-stepped CW approach to

obtain measurements of the radar channel frequency response. The

implementation is a generalized system for producing CW measurements such

as those measured by an HP 8510 network analyzer. The exact mechanism by

which frequency response samples are measured using the frequency-stepped

CW approach was described. The underlying principles of the stepped CW

78



system were presented as the basis for the optimal signal processing algorithm

derived and illustrated in Chapter 5. Use is made of the inhomogeneous media

model derived in Chapter 2 to simulate the measurement of non-uniform

plasma densities using the frequency-stepped CW system. Target range

uncertainty, inherent in IFFT processing due to the finite bandwidth of the

measurement sweep, was clearly demonstrated in the results of the simulation.
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Chapter 5

Globally Optimal Signal Processing of the Frequency-Stepped CW
Data

The physical data measured by the stepped CW radar system is a

sequence of complex reflection coefficients as seen from the aperture plane to

which the system is calibrated. As was shown in Chapter 4, this sequence of

measured reflection coefficients may be interpreted as samples of the channel

frequency response H(j00). Given these measurements the objective is to

determine the target range. The standard approach [HP] is to perform an IFFT

which produces an estimate of the channel time domain impulse response.

Peaks in the impulse response correspond to reflections and their time delay

corresponds to the range to the reflection. The resolution of this approach is

limited by the measurement bandwidth. Since the measurement bandwidth

must be kept relatively narrow when the target is embedded in a frequency

dependent inhomogeneous medium to avoid significant dispersion, the

resolution offered by the IFFT approach may be unsatisfactory.

In this chapter a new optimal signal processing algorithm is derived

which maximizes the range resolution obtainable from any set of frequency-

stepped CW measurements. The resolution limitations of the IFFT approach are

demonstrated along with the enhancement offered by the new optimal

processing algorithm using physical measurements made with an HP 8510

network analyzer. Two different sets of measured data are analyzed. The first

set is a sequence of reflection coefficients measured at the input port of the

7ram Beatty Standard [Beatty]. The second set is a sequence of reflection
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coefficients measured at the input port of a test apparatus for the MRIS

instrument described in Chapter 1. In order to illustrate the resolution

enhancement achievable by optimal processing over the IFFT, the

measurement bandwidth is reduced to the point that the IFFT approach clearly

fails to resolve two distinct reflections that are known to exist. The optimal

processing algorithm is then applied to the reduced bandwidth data and the

results reveal the potential resolution achievable.

5.1 The General Least Squares Optimization Problem

Given a set of frequency response measurements generated by the

frequency-stepped CW radar system, the objective is to determine the target

range. This may be accomplished by assuming an underlying physical model

for the channel, computing the frequency response of the model at the

frequencies at which the measurements were taken, and finally minimizing the

norm of the difference between the physical measurements and the values

produced by the model. The analytical expression for the objective function to

be minimized, denoted by J, is given by

J = IIH(j(%+iA_o))- Hm(J(_oo+iA_o))ll (5.1.1)

where the Hm(J(¢o0+i_o) ) are the measured complex reflection coefficient pairs,

the H(j(_Oo+iA_o)) are the values of a theoretical model, !1• II denotes vector norm

[Golub], and i is the index number of each measurement and spans the integer
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range from 1-n. J is a function of the parameters of the physical model yet to be

specified.

The physical propagation path which will be assumed contains a

reflective target embedded in an inhomogeneous medium. The inhomogeneity

may be either continuously tapered, as in the case of the non-uniform CFD

plasma profile, or composed of distinct media layers each having a different

permittivity, as in the case of the thermal protection heat tiles of the AFE

spacecraft, or any combination of the two. The simplest realistic model for the

system impulse response has the form

h(t) = Al_(t-tl) + A2_(t-t,.z)+ A3_(t-t3) + ... (5.1.2)

where the A i are the reflection amplitudes and the ti are the time delays to the

reflections. The corresponding frequency response of the system is obtained by

taking the Fourier Transform of (5.1.2) which produces

H(jco) = Ale'S, + A2e-J_2 + A3eJ_°t3+ ... (5.1.3)

Samples of this frequency frequency response form the model values

comprising H(j(ooo+i_,o0))in (5.1.1).

H(j(OOo+iA_)) = A1eJ(¢%+_¢°)t,+ A2e-I(_o*_o_)t2+ A3e-J(¢o*_)t3 + ... (5.1.4)

Therefore, using the assumed model for the system impulse response (5.1.2),

the objective function J (5.1.1) is a function of the reflection amplitudes and

delays.

The type of vector norm implemented in (5.1.1) must be judisciously

chosen. A proper choice of norm will incorporate all the measured data and
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present a tractable mathematical problem for extracting the optimal values for

the amplitudes and delays of the model. A reasonable choice is the 2-norm

since the objective function J will be quadratic in the amplitude parameters and

a standard least squares approach [Golub, Lawson] can be used to extract

those parameters. Using the 2-norm as the metric in (5.1.1), the general least

squares optimization problem becomes finding the set of amplitudes and delays

in the model which minimize

n

J = _ IH(j(°_o+i_'_)) " Hm(J(_oo+iAoo))l2
i=1 (5.1.5)

The summation index i in (5.1.5) ranges over the n measured data pairs. In the

next section a derivation is presented for determining the optimal reflection

amplitudes and delays.

5.2 Derivation of the Optimal Reflection Amplitudes

The objective is to find the global minimum of the performance metric

(5.1.5) with respect to the amplitude-delay pairs A i, t i in the model (5.1.2-3). This

objective is achieved by decomposing the performance metric (5.1.5) into a sum

of linear and non-linear components. The linear portion of the objective is a set

of simultaneous linear equations whose solution yields the optimal amplitudes.

The metric (5.1.5) is quadratic in the amplitude parameters A i. This allows the At

to be calculated in closed form by solving the least squares problem

Fa = f (5.2.1)
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The complex (n x N) matrix F is composed of frequency response estimates

based on the model (5.1.4) and is given by

F ,_.

COS(eIt 1) - j sin(elt 1) cos(elt 2) - j sin(colt2) ...

COS(_°2tl) ijsin(_°2tl) c°s(_°2t2)-- Jsin(°_2t2) :i
: •

COS(%t 1)- j sin(%t 1) coS(_nt 2) - j sin(o_nt2) ,..

cos(_ 1tN)-J sin(_ 1tN)

cos(o:2tN) - j sin(_2t N)

cos(c%tN) - j sin(centN)

(5.2.2)

where n is the number of frequency measurements and N is the number of A i, t i

pairs to be extracted. The complex vector f is composed of the physical

frequency response measurements and is given by

f = [HM(O_ 1) HM(°02) HM(_3) "'" HM(°°n )IT (5.2.3)

The vector a in (5.2.1) contains the set of amplitudes A i to be determined

a = [A1 A2 A3 -" AN]T (5.2.4)

Solution of the least squares problem requires assuming a set of delays t i. It is

shown later that by "scanning" a sequence of amplitude optimized objective

function values for certain delay combinations, it is possible to find the global

minimum of (5.1.5). Finding the global, or absolute minimum of (5.1.5)

determines the optimal set of reflection amplitude-delay pairs. If there exists

any a priori knowledge about the target range such as upper and/or lower

bounds, the range of the time delays over which the objective function is

scanned can be limited and the amount of computation necessary to find the

global minimum reduced.
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The solution to (5.2.1) will yield a set of complex amplitudes because the

model (5.1.2-4) will not fit the physical data exactly. However, in the derivation

which follows, the amplitude vector a is constrained to be real. The same

approach that is used to solve the standard real LS problem using the normal

equation approach [Golub, Lawson] can be extended to solve this problem.

The solution to (5.2.1) is found by minimizing the real scalar that results from the

following squared inner product.

Y = II (Fr * J Fi)a" (fr + Jf )ll (5.2.5)

Y =(Fra" fr)X(Fr a" fr) +(Fia " fi)T(Fi a" fi) (5.2.6)

T fTf_ (5.2.7)Y = aT[FTFr + FTFi] a" aT[FTfr + FTf,] " [fTFr + 'TFi]a + frfr +

In order to minimize y, the gradient of (5.2.7) is taken with respect to the

amplitude vector a and set equal to the zero vector.

ay = 0 = 2[FTFr + FTF,]a- 2[FTf,
_a + FTfi]

(5.2.8)

The result of the minimization of (5.2.5) is a real, square set of linear equations

which can be solved by using any linear equation solving technique.

T FTFi ]a = Fr r +IF r Fr + Tf FTf (5.2.9)

However, in certain cases, the symmetric matrix premultiplying a is extremely

ill-conditioned [Golub, Lawson]. In order to see when such cases arise let
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. =F Fr÷F, F, (5.2.1O)

and examine the case of a two reflection problem for simplicity.

H 2x2 =

n n

T. cos2(o_it 2) + sin2(o_it2 ) = n T. cos((_it 1)cos((_it 2) + sin(_oit I )sin(_it 2)
i=1 i=1

n

i_1 cos(i.0 it1 )cos(o_ it2 ) , sin(e it1)sin(e it2)

n

i=7_.1cos2((_it2), sin2(_it2 ) = n

(5.2.11)

One obvious case that will cause H to be ill-conditioned occurs when the values

of t1 and t2 are nearly equal. When the values of t1 and t2 are exactly equal, H

becomes singular. In order to deal with this problem, the singular value

decomposition technique [Golub, Press] is used to solve (5.2.9). When any

singular value is found to be less than 0.01, its value is set equal to zero before

the final computation of a is performed. This extracts the minimum norm

solution to (5.2.9), which is precisely what is sought.

The original LS optimization problem (5.1.5) has been decomposed into

a linear problem whose solution yields the amplitudes Ai, and a highly non-

linear problem whose solution, it will be shown, yields the delays tr It is

important to recognize that the solution of (5.2.9) for the amplitudes Ai requires

that a set of delays ti be utilized in forming the entries of the matrix H.

The following optimization procedure may be followed for extracting the

Ai, tipairs:

1) Choose the number N of Ai, ti pairs to be determined.

2) Assume a sequence of ti values and solve (5.2.9) for the optimal A i .

3) Search for the global minimum of (5.1.5) using the amplitudes found from

the solution of (5.2.9).
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It will be shown in Section 5.4 that the geometric interpretation of the LS

objective function J, subject to the solution of (5.2.9), is a multiple minima

surface with grooves aligned with the delay axes. The grooves in this surface

can be searched sequentially and the global minimum found with little

computation. The global minimum corresponds to the optimum reflection

amplitudes and delays and hence to target range. The next section presents

frequency-stepped CW measurements made using an HP 8510 network

analyzer which will then be analyzed using the global optimization technique in

section 5.4.

5.3 Experimental Measurements

This section presents frequency-stepped CW measurements made using

an HP 8510 network analyzer in two different experimental set-ups. First,

measurements of the reflections in an air-line coaxial cable section, the Beatty

Standard, are presented. Then, measured data from an MRIS test apparatus

including a simulated heat tile is examined. The process of extracting the

reflection time delays using the standard IFFT approach, as used by the HP

8510 network analyzer internal computer, is illustrated for both sets of

experimental data.

Consider the 7 mm Beatty Standard [Beatty, HP] of the HP-8510 network

analyzer terminated in a matched load and its theoretical bounce diagram as

shown in figure 5.3.1. The Beatty Standard presents two step-discontinuities in

the characteristic impedance of the line. These discontinuities are produced by
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an abrupt change in the outer diameter of the inner conductor. The bounce

diagram shows the theoretical amplitude and delay of each reflection for

measurement calibrated to the input port of the Beatty Standard.

Measurements of the reflection coefficient s11 were taken over two different

bandwidths using an HP8510 network analyzer.

The first set of measurements were taken over the band 45 MHz - 18 GHz

using 801 evenly spaced frequencies. The resulting IFFT is shown in figure

5.3.2. A rectangular window [Harris] was utilized to maximize the resolution

between the reflections. The 18 GHz bandwidth is large enough to clearly

distinguish the reflections. In addition, the amplitude and delay of the first three

reflections is very accurate. The second set of measurements were taken over

the band 4 GHz - 6 GHz using 801 evenly spaced frequencies, and the resulting

IFFT is shown in figure 5.3.3.
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Figure 5.3.1 7 mm coaxial Beatty Standard terminated in a matched load and
the resulting bounce diagram for a unit impulse stimulus.
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Figure 5.3.2 Inverse FFT of 801 measurements of the reflection coefficient at
the input port of the 7 mm Beatty Standard shown in figure 5.3.1.
The bandwidth used in this measurement is 18 GHz.
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Figure 5.3.3 Inverse FFT of 801 measurements of the reflection coefficient at

the input port of the 7 mm Beatty Standard shown in figure 5.3.1.
The bandwidth used in this measurement is 2 GHz.
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The 2 GHz bandwidth is so small that the two reflections (83 ps, 583 ps) have

merged into a single pulse. In this case the IFFT cannot resolve the two

reflections. In addition, the location of the peak in the impulse response is

biased [Kay88] away from the correct location of either of the two reflections.

Hence, when two reflections are so close in time that the IFFT cannot resolve

them, accuracy is lost as well.

In order to test the applicability of the optimization approach to detecting

the turning point range for the MRIS instrument, a test fixture was constructed at

NASA LaRC. This fixture is shown in figure 5.3.4 along with its physical

connection to the network analyzer via a rectangular to circular waveguide

transition. The network analyzer is calibrated to the input port of the waveguide

as shown in the diagram. The simulated heat tile is composed of a 0.25" thick

layer of silicon dioxide, or quartz glass (¢r = 3.78), and a 0.5" thick layer of

polyurethane foam (_r = 1.4). A 0.5" thick aluminum plate is used for the

aperture ground plane. The target is formed by the presence of another 0.5"

thick aluminum plate parallel to the aperture plane of the circular horn antenna.

Target range is set by moving mobile target.

In the first set of measurements, the target was set at a distance of 12"

from the outer surface of the quartz glass. The two primary reflections will be

due to the high dielectric constant quartz glass and the metal plate target. 801

measurements of the reflection coefficient were made from 14-18 GHz,

spanning a total bandwidth of 4 GHz. The IFFT of the measured radar data is

shown in figure 5.3.5. The first three reflections are clearly resolved. The time

delay corresponding to the first reflection, due to the quartz glass interferer, is

difficult to calculate accurately because the velocity of propagation throughout
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the waveguide and antenna is not known. The velocity of energy propagation,

or group velocity, within a waveguide is frequency dependent and is given by

[Collin]

v0 '
(5.3.1)

where c is the free space velocity of light, fc is the cut-off frequency of the

waveguide, and f is the frequency of propagation. The rectangular waveguide

in figure 5.3.4 has the dimensions 1.58 cm by 7.9 mm. This geometry produces

a cut-off frequency of 9.49 GHz [Collin]. In order to determine the average

group velocity, Vg must be integrated over the measurement bandwidth.

Vav f2 "fl

1

The antiderivative is of standard form and from [CRC] is given by

f2 fl - df =---c-- _/-_. _. f_sec-l[_l]. f2.fl u /fcl/j

(5.3.2)

(5.3.3)

Using the frequency span of 14-18 GHz in (5.3.2) and a cut-off frequency of 9.49

GHz, the average velocity of propagation is found to be 0.801c within the

rectangular waveguide. If the entire length of waveguide in figure 5.3.2 were

rectangular, the two-way travel time to the center of the quartz glass would be

3.71 ns. The time delay to the first major reflection is approximately 3.45 ns as

determined from the IFFT shown in figure 5.3.5. The time delay calculation
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above, which assumes that the entire waveguide and antenna system is

composed of a uniform rectangular waveguide, is intended only as an example

of an approach which may be used to determine the average propagation delay

through the waveguide system. The calculation of the average group velocity

within the waveguide structure is actually more complicated due to the

rectangular to circular transition as well as the flare in the circular horn antenna.

The rectangular to circular waveguide transition is designed to suppress the

creation of multiple modes. A gradual transition from rectangular to circular

geometry allows the energy in the dominant mode (TElo) of the rectangular

guide to propagate as energy in the dominant mode (TEll) of the circular guide

[Collin]. However, the circular horn stimulates the creation of several TE and

TM modes making the calculation of average group velocity more complicated

than assuming single mode transmission. By carefully examining the geometry

of the waveguide and circular horn antenna, the average propagation velocity

may be calculated leading to a very accurate prediction of the time delay to the

quartz glass.
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Figure 5.3.5 Normalized Inverse FFT of 801 measurements of the reflection

coefficient at the input port of the MRIS test apparatus shown in
figure 5.3.4. The bandwidth used in this measurement is 4 GHz,
and the target range is 12".

However, the prediction of the time delay to the interfering reflection from the

quartz glass is not the primary interest here. The primary concern is target

range resolution and accuracy. Detecting accurately the time delay from the

reflection due to the quartz glass to the metal plate target is the objective.

The IFFT shown in figure 5.3.5 indicates there is a delay of 1.97 ns from

the quartz glass to the metal plate. Using the free space velocity of propagation

for the two-way distance of 24" in air requires 2.032 ns. Since each reflection
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from from the quartz glass is assumed to be a single impulse, two unresolved

impulses resulting from the front and back surfaces, an additional delay of 41 ps

is included to account for the 0.25" of travel through the glass. Thus, the target

range is defined to be the distance from the center of the glass to the metal

plate. The total theoretical two-way travel time is 2.073 ns. A time delay

estimate of 1.97 ns is produced by the IFFT. Thus, the error in the time delay

estimate produced by the IFFT using 4 GHz of bandwidth is 103 ps and

corresponds to a range estimate error of approximately 0.608" (1.545 cm).

In the second set of measurements, the target was set at a distance of

2.25" from the outer surface of the quartz glass. 100 measurements of the

reflection coefficient were made from 14-14.5 GHz, spanning a total bandwidth

of only 500 MHz. The IFFT of the measured radar data is shown in figure 5.3.6.

The narrow bandwidth spanned by the measurement sequence is so small that

several reflections have merged into a single lobe of the IFFT. The 2.25"

distance from the outer surface of the quartz glass to the metal plate target

corresponds to 0.381 ns of two-way travel time. Including 41 ps of delay within

the quartz glass results in a total theoretical two-way travel time of 0.422 ns.

Since the metal plate target is so close to the tile, there are many reflections

between the quartz glass and the aluminum plate. These reflections are

separated by 0.422 ns in time. The main lobe in the IFFT spans approximately

2 ns, enough time to "swallow" nearly 3 of these multibounce reflections. The

time delay corresponding to the second major peak in the IFFT of figure 5.3.6 is

4.8 ns and has no value in assessing the range to the target. This is the best

performance the IFFT has to offer for determining the distance to the target
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under the bandwidth constraint of 500 MHz with only 100 frequency

measurements.

lh(t)l

1

0.8

0.6

0.4

0.2

t / I I J . I

i t3 _. i i 1

:.fl, , i i..................._'i........... ="!..................."_....................!...................._..................1 i 4.8n,i 1

........ "....... t ....................ii_i/_....................t...................
I I I

0 2 4 6 8 10 12

Iime (ns)

Figure 5.3.6 Normalized Inverse FFT of 100 measurements of the reflection
coefficient at the input port of the MRIS test apparatus shown in
figure 5.3.4. The bandwidth used in this measurement is 500
MHz, and the target range is 2.25".

5.4 Optimal Signal Processing of the Experimental Measurements

This chapter presents the results of applying the globally optimal signal

processing technique derived in section 5.2 on physical measurements. The

processing technique is globally optimal in the sense that the minimized

objective function (5.1.5) has many local minima and a search procedure is

used to find the absolute minimum. This global minimum determines the best
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set of reflection amplitudes and delays given the frequency data and assuming

that the radar channel has distinctly reflective scatterers.

Consider the objective function (5.1.5) for two assumed delays, one

scanned from 0-0.8 ns along one delay dimension and the other from 0.06-0.1

ns using the Beatty Standard data and 18 GHz bandwidth. This function may

be interpreted as a surface above the "delay" plane as shown in figure 5.4.1. It

is very important to recognize that every value of J(t i, tj) is the result of solving

(5.2.9) using each delay pair ti, tj in the domain shown. The surface shown in

figure 5.4.1 has a single global minimum which corresponds the optimum delay

pair (tI = 83 ps, t2 = 583 ps). The grooves in the objective function extend along

the delay axes. The deeper groove at 0.083 ns is due to the larger amplitude

reflection caused by the first discontinuity of the Beatty Standard coaxial line

(amplitude = -0.3333). The groove at 0.583 ns is due to the slightly smaller

amplitude reflection from the second discontinuity (amplitude = 0.297). The

surface has multiple local minima, hence a simple descent algorithm will fail, in

general, to locate the global minimum. One approach that will be demonstrated

here is to use a grid search algorithm on the objective function. Grid search is a

method of finding the global minimum by finding the least value of J along one

delay dimension while holding the other delay fixed. Then, once the least value

of J is found in that dimension, the corresponding delay is held fixed, and the

search is performed along the other dimension. By performing multiple

iterations in this fashion, the global minimum is found once the delays are no

longer updated. The global minimum for the 18 GHz case (figure 5.4.1) was

found in two iterations to be t I = 0.082 ns, t2 = 0.588 ns, very close to both the

theoretical delays as well as the estimates produced by the IFFT approach.
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Figure 5.4.1 Amplitude optimized objective function constructed from 801
reflection coefficient measurements of the Beatty Standard
(figure 5.3.1) using a bandwidth of 18 GHz.
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The more interesting case occurs when the bandwidth is reduced to 2 GHz and

the IFFT is useless for determining the range to either of the first two reflections.

Applying the optimal signal processing algorithm to the frequency data for this

case results in the objective function illustrated in figure 5.4.2. There still exist

grooves in the objective function. However there are several grooves whose

minima lie between the values 0.083 ns and 0.583 ns. There does exist a

single global minimum in this domain and the delay values obtained using grid

search to find it are .082 ns and 0.587 ns, which is more accurate than the delay

estimates produced by the IFFT for 18 GHz bandwidth. The impulse response

generated by the optimization approach is shown in figure 5.4.3. This result

alone shows the resolution enhancement offered by the optimization approach

over the standard IFFT as used by the HP 8510 network analyzer.
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Figure 5.4.3 Impulse response of the Beatty Standard obtained using grid
search (3 iterations) on the amplitude-optimized objective
function resulting from 2 GHz bandwidth HP8510
measurements.

A more impressive set of results is obtained from the radar

measurements of the MRIS test apparatus of figure 5.3.4. The objective

function surface for 801 measurements over a 4 GHz bandwidth is shown in

figure 5.4.4. This surface clearly shows grooves along the delay axes. The

domain of this plot was chosen to display the symmetry of the objective surface.

As shown, there are two global minima one with t1 = 3.47 ns, t2 = 5.43 ns and

the other with t1 = 5.43 ns, t2 = 3.47 ns, which are exactly the same solution to

the problem. Now consider the case of only 100 measurements spanning a

bandwidth of only 500 MHz. The IFFT produced the meaningless result shown

in figure 5.3.6. The optimization approach produces the objective surface

shown in figure 5.4.5.
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Figure 5.4.4 Amplitude optimized objective function constructed from 801
reflection coefficient measurements of the MRIS test apparatus
(figure 5.3.1) using a bandwidth of 4 GHz. Target is at a distance
of 12" from the outer surface of the quartz glass.
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Figure 5.4.5 Amplitude optimized objective function constructed from 801
reflection coefficient measurements of the MRIS test apparatus

(figure 5.3.4) using a bandwidth of 500 MHz. Target is at a
distance of 2.25" from the outer surface of the quartz glass.
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This objective function surface may appear to lack structure. However, the

surface has grooves running along the delay axes which can be scanned

successfully using the grid search algorithm. Evidence of these grooves may

be seen by carefully examining the right half of the surface. The ridges in the

surface indicate the presence of the grooves. The surface also possesses a

macroscopic bowl shape, albeit very "noisy," in the domain shown. There are

two global minima, either of which produces the delay estimates t 1 = 3.53 ns, t2

= 3.95 ns. These delay values were found by polishing the result of a first-pass

grid search with an additional grid search. In the first pass, the domain

scanned was 1-6 ns in each delay dimension using 50 ps increments. After 16

iterations of grid search, the resulting time delays are tI = 3.55 ns, t2 = 3.95 ns.

Then, a second pass was performed over the domain 3.5-3.6 ns in the first

delay dimension and 3.9-4.0 ns in the second delay dimension using 1 ps

increments. After 12 iterations of grid search in the second pass, the resulting

time delays are tI = 3.53 ns, t2 = 3.95 ns. The impulse response produced by

the optimization technique is shown in figure 5.4.6.

One interesting observation that should be made is the that the estimate

of the time delay to the quartz glass is larger (3.53 ns) for the 500 MHz case

than for the 4 GHz case (3.45 ns, see figure 5.3.5). Thus, it appears that the

glass has moved in range. The cause of the 80 ps additional delay is due to the

fact that the frequency scan in the 500 MHz case is from 14 GHz to 14.5 GHz, a

band whose average frequency is less than the average frequency for the 4

GHz case which scanned from 14-18 GHz. Hence, from (5.3.2) the average

group velocity is less for the 500 MHz sweep than for the 4 GHz sweep, and a

longer time delay to the glass is expected.
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The most important measurement is the difference in time delay between

the two reflections. This delay difference is found to be t2-t 1 = 0.42 ns. The

theoretical value was calculated to be 0.422 ns. Hence, a delay error of only

2 ps is produced by the optimization approach in this case. This 2 ps error in

the delay estimate corresponds to approximately 0.3 mm. This result clearly

shows the resolution capability of the optimization approach. The IFFT for this

measurement case (figure 5.3.6) was totally useless for determining the range

to any reflection while the optimization approach has distinctly and accurately

resolved both the reflection from the metal plate target as well as the reflection

from the quartz glass.
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Figure 5.4.6 Normalized Impulse response of the MRIS test apparatus of
figure 5.3.4 obtained using grid search (16 iterations, 14
iterations polished) on the amplitude-optimized objective
function resulting from 500 MHz bandwidth HP8510
measurements. Target range is 2.25".
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The results for the IFFT and optimization approaches for both the Beatty

Standard and MRIS experiments are presented in the tables below.

Table 5.4.1 Comparison of reflection delay estimates produced by the IFFT
and optimization approaches for the Beatty Standard.

BW = 18 GHz, n=801 measurements Theoretical IFFT

"l-wnedelay to the first reflection:

Time delay to the second reflection:

83ps 82ps 82ps

583 ps 585 ps 588 10s

BW = 2 GHz, n=801 measurements Theoretical IFFT

Time delay to the first reflection:

Time delay to the second reflection:

83 ps N/A* 82 ps

583 ps N/A* 587 ps

Table 5.4.2 Comparison of target delay estimates produced by the IFFT and
optimization approaches for the MRIS test apparatus. The

distance from the outer surface of the quartz glass to the metal
plate target is 12" for the 4 GHz case and 2.25" for the 500 MHz
case. All time delays shown are two-way travel times from the
center of the quartz glass to the metal plate.

BW = 4 GHz, n=801 measurements

Time delay from the quartz glass
to the metal plate target:

Theoretical IFFT

2.073 ns 1.97 ns 1.96 ns

BW = 500 MHz, n=100 measurements Theoretical IFFT

Time delay from the quartz glass
to the metal plate target: 0.422 ns N/A* 0.420 ns

* It is not clear from the IFFT results that there are two reflections. Even if two reflections are
assumed, the time delays to the peaks in the IFFT results are erroneous to the point of being
meaningless.
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An existing parametric technique called the Matrix Pencil Method [Hua,

Maricevic] was designed to recover amplitude-delay pairs from frequency

domain data. The Matrix Pencil Method has been shown to perform

significantly better than the IFFT approach. The results presented in this

chapter for the optimization approach applied to the Beatty Standard are

comparable to those presented for the Matrix Pencil Method [Maricevic].

However, the optimization approach is much more general. For example, time-

gating [Artech84,87] can be implemented easily in the optimization approach.

This is equivalent to searching only over certain regions in the delay plane. No

physical constraints such as time-gating can be implemented in the Matrix

Pencil Method without a significant modification in its derivation.

5.5 Summary

This chapter has presented the derivation and demonstration of a new

algorithm for processing radar data produced by any frequency-stepped CW

system. The derivation is based on minimizing the two-norm of the difference

between the sequence of measured reflection coefficients and those produced

by a model which assumes that the echoes from the radar channel are impulses

in the time domain. A performance comparison between the IFFT and optimal

processing techniques was presented in the context of two physical

measurement sets. In the first set, the Beatty standard was terminated in a

matched load and driven by an HP 8510 network analyzer. The measurement

bandwidth was reduced from 18 GHz to 2 GHz and it was shown that while the

IFFT produced meaningless reflection range estimates in the 2 GHz case, the
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optimal processing approach was able to clearly resolve the reflections and the

resulting reflection range estimates were more accurate using 2 GHz bandwidth

than those produced by the IFFT using 18 GHz. In the second set of

measurements, an MRIS test apparatus was also driven by an HP 8510 network

analyzer. In this set of measurements the bandwidth, target range and the

number of measurements were all reduced. First, the metal plate target was set

at a range of 12" and 801 measurements spanning a total bandwidth of 4 GHz

were analyzed using both the IFFT and optimal processing algorithms. The

target range estimates resulting from both methods were of equal accuracy.

Then the target was set to a range of 2.25", the number of measurements was

reduced to 100 and the bandwidth was reduced to only 500 MHz. The range

resolution and accuracy deterioration produced by IFFT processing was clearly

evident. In this case, the IFFT could not distinguish the presence of two

reflections nor could it determine accurately the range to either the interfering

reflection or the metal plate target. However, the optimal processing approach

could not only resolve the two reflections but could estimate both of their ranges

with high accuracy. This result demonstrates the resolution enhancement

offered by the optimal processing approach over IFFT processing.
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Chapter 6

Conclusions and Future Research

This dissertation provides three original contributions to the field of

microwave-millimeterwave radar. A model for electromagnetic planewave

propagation in inhomogeneous media was derived in chapter 2 and its

performance illustrated in the context of modelling EM propagation in non-

uniform electron plasmas. This model is based on the theory of transmission

lines and represents an inhomogeneous medium by thin cascaded slabs, each

of which is homogeneous but whose combined structure is inhomogeneous. It

has been shown that as the thickness of each slab is reduced, the response

from the model asymptotically approaches the true physical response. The

model can be implemented very efficiently using advanced computer

programming techniques such as recursive programming which allow the use

of hundreds of thousands of slabs while requiring little computation time.

A new formulation for the frequency-stepped double sideband

suppressed carrier radar system was derived in Chapter 3. This reformulation

included the effect of an interfering reflection. Simulation results were

presented which illustrate that the DSBSC radar system is capable of accurate

target range estimation even when the echo from the target is much weaker

than the echo from the interferer.

A new globally optimal signal processing algorithm was derived in

Chapter 5 for processing radar data produced by the frequency-stepped CW

system. A non-linear least squares objective function is formulated, and its

absolute minimum yields both the delay times and amplitudes of the reflections

110



from the target and any reflective intefferer. The performance of the algorithm is

demonstrated using physical radar data and it is shown to produce accurate

and highly resolved target range estimates even when the bandwidth is

reduced well beyond the point where the standard IFFT approach fails.

Several simulation results have been presented in the context of

measuring non-uniform electron plasma densities that develop near the heat

tiles of a space re-entry vehicle. Unfortunately, an appropriate plasma profile

cannot be produced for ground testing. Hence, with the exception of performing

an actual atmospheric aeropass, their measurement can only be performed by

computer simulation. For this reason, the inhomogeneous media model

derived in this dissertation, which can simulate accurately the propagation of

planewaves in an electron plasma, is especially significant.

Several research problems are generated by the work presented in this

dissertation. The inhomogeneous media model should be extended to include

oblique incidence which will require the effects of polarization to be included as

well. In [Pozar] the transmission line analogy for EM planewave propagation

through dielectric slabs is extended to include oblique incidence. Hence, the

framework for extending the cascaded slab model to include oblique incidence

already exists. Another extension of interest would be the inclusion of antenna

radiation pattern [Jordan, Silver]. The MRIS system described in Chapter 1

utilizes a circular horn antenna mounted behind the heat tiles of the AFE

spacecraft. The radiation transmitted into the propagation path is approximated

by planewaves incident normally on each of the media layers. However,

because the antenna is so close to these media layers, the radiation is actually

composed of spherical waves and therefore much of the radiation is obliquely
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incident on the layer boundaries. The intensity of radiation as a function of

angle constitutes the antenna radiation pattern and must be included in the

inhomogeneous media model for a truly accurate representation of the physical

measurement.

In the derivation of the DSBSC system in Chapter 2, as well as the

stepped CW system in Chapter 3, it was tacitly assumed that both the target and

interferer are stationary. If either the target or interferer move significantly

during the time in which a measurement is made, the received echoes will

contain a Doppler shift. The effect of target motion on the measurements made

by these radar systems remains to be explored. Standard radar techniques

such as pulsed radar, extract target velocity from the Doppler shifted echo. It is

expected that target velocity estimation may be achieved by both frequency-

stepped radars examined in this dissertation. However, this remains to be

shown.

The DSBSC system was derived for exactly two reflections, one from the

target and one from the interferer. This derivation provides a significant

improvement in the applicability of the DSB technique. However, the technique

should be generalized to include the effects of several reflections.

The derivation of the optimal signal processing algorithm in Chapter 5 for

the stepped CW system made no assumption about the number of reflections.

However, the simulations presented examined only the case of extracting two

reflections from the radar data. For the case of two reflections, it was

demonstrated that a simple grid search procedure can be used to find the

global minimum of the objective function. The optimization process should be

investigated for an arbitrary number of reflections. It is likely that the simple grid
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search technique will fail in the more general case. A more sophisticated

search technique, such as simulated annealing [Bev], may be required.

There may be applications for the two radar systems presented in this

dissertation for which the propagation path induces significant noise in the

radar measurements. This issue has not been addressed and remains as

future research.
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Chapter 8

Appendix: Derivation of Equation 3.2.14

Proof:

F(x)= I
a.bcos(x) _ tan.l|
c+dcos(x) dx = bx +d Vc2.d 2 _ c+d (8.1)

A

trigonometric polynomial integrand of F(x) into a rational polynomial. Let

substitution of variables will be made which will transform the

This produces

u = tan(_-) (8.2a)

and

x = 2 tan "1u dx = --2--- du
1 + u2 (8.2b)

cos(x) = cos(2tan'_u) = 1 - 2sin2(2tan "1u)= 1 - 2sin2(sinl(----u-_ll
(8.3)

cos(x)= 1 - 2u_ =
l+u 2 l+u 2 (8.4)

F(x) may be decomposed into two simpler functions Fl(X ) and F2(x).

a+bcos(x) a/_dx=

¢

dx . bJ cos(x)
c+dcos(x) -J c+dcos(x)

dx = FI(X) + F2(x)

(8.5)
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Transforming the function Fl(x ) into the function Fl(U ) using the transformation

(8.2) yields

af __2_
F1(u) = 1+u 2

c*d(J J- ldu
_1+U2)

= 2a I ______duc(1
(8.6)

Fl(u) =
P

2]a/ du = 2a duc+d + (c-d)u 2 c+d + u2
c-d (8.7)

Recognizing the integrand of (8.7) as a having the familiar derivative relation

_d_tan.llU__ I_ du

du  2+u2 (8.8)

allows Fl(u) to be expressed as

F1(U) = _2___,,/---_tan-lluA _/
c-dVc+d _ Vc+d/ (8.9)

Simply replacing the variable u with tan(x/2) gives

_ / c2_cE-_-d2tan{X-I_
_tan-l| "2/|

F1(x) = Vc2-d 2 _ c + d J (8.10)
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Now transforming the function F2(x) into the function F2(u) using the

transformation (8.2) yields

fF2(u) = b l+u 2 ---?=--du = 2b 1"u2
c.d/-_/1 .u2 (0(1+u_)+d(1-u2)X1.u_)

-_1 +u 2/

du

(8.11)

du

(8.12)

The integrand of (8.12) may be decomposed into two simpler functions using

partial fraction expansion giving

c.__dI L du + 2c-_-I _ duF2(U) = Ic+d + u2/ (1 +u2)
_c-d / (8.13)

where the constants A and B are easily determined to be

A=-C B = c-_:d_
d d

Inserting these coefficients into (8.13) gives

F2(u) "2-c-2--b_Idu= + 2d-_l 1dU+u2)
lc+__.u2) (1

d(c-d)J _c-d (8.14)
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The first anti-derivative in (8.14) is identical to (8.7) and the second is easily

evaluated using the derivative relation (8.8) yielding

(8.15)

Once again substituting u=tan(x/2)

i  -d taSX) 
F2(x)= -2Oc_tan-l| ____2 ] +

d_ _' c+a I

Combining F l(x) with F2(x) completes the proof.

(8.16)
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